por JU201015 » Dom Nov 18, 2012 21:28
Uma bolinha de tênis, após se chocar com o solo, no ponto O, segue uma trajetória ao longo de quatro parábolas. A altura máxima atingida em cada uma das parábolas é 4/3 do valor da altura máxima da parábola anterior. Sabendo-se que as distâncias entre os pontos onde a bolinha toca o solo são iguais e que a equação da primeira parábola é y=-4x²+8x, a equação da quarta parábola é?
Bom, o Yv da primeira parábola, é 4 ou seja, a altura máxima atingida pela primeira parábola é 4. Se a altura da primeira é 4/3 da próxima, então a altura máxima da segunda será 3, da terceira 9/4 e da quarta 27/16.
Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8.
Concluindo, eu sei que o Yv da terceira função será 27/16 e as raízes 6 e 8. Mas não consigo montar a equação da quarta parábola. Me ajudem?
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Seg Nov 19, 2012 11:58
JU201015 escreveu:ma bolinha de tênis, após se chocar com o solo, no ponto O, segue uma trajetória ao longo de quatro parábolas. A altura máxima atingida em cada uma das parábolas é 4/3 do valor da altura máxima da parábola anterior. Sabendo-se que as distâncias entre os pontos onde a bolinha toca o solo são iguais e que a equação da primeira parábola é y=-4x²+8x, a equação da quarta parábola é?
Vamos avaliar seu desenvolvimento :
JU201015 escreveu:Bom, o Yv da primeira parábola, é 4 ou seja, a altura máxima atingida pela primeira parábola é 4. Se a altura da primeira é 4/3 da próxima, então a altura máxima da segunda será 3, da terceira 9/4 e da quarta 27/16.
Levando em conta que em cada parábola , suas distâncias são proporcionais pela razão

, Por definição de P.G , a altura máx.da última parábola , será : [Unparseable or potentially dangerous latex formula. Error 6 ] .
JU201015 escreveu:Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8.
Correto .
JU201015 escreveu:Concluindo, eu sei que o Yv da terceira função será 27/16 e as raízes 6 e 8. Mas não consigo montar a
equação da quarta parábola. Me ajudem?
Por favor , leia novamente o texto . E veja a definição de P.G .
Ressaltando que a parábola pode ser escrita na forma fatorada :

são raízes .
Não tempo + p/ dar atenção .Prometo mais tarde voltar aq , p/ concluir algumas observações .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por JU201015 » Seg Nov 19, 2012 13:27
santhiago escreveu:JU201015 escreveu:ma bolinha de tênis, após se chocar com o solo, no ponto O, segue uma trajetória ao longo de quatro parábolas. A altura máxima atingida em cada uma das parábolas é 4/3 do valor da altura máxima da parábola anterior. Sabendo-se que as distâncias entre os pontos onde a bolinha toca o solo são iguais e que a equação da primeira parábola é y=-4x²+8x, a equação da quarta parábola é?
Vamos avaliar seu desenvolvimento :
JU201015 escreveu:Bom, o Yv da primeira parábola, é 4 ou seja, a altura máxima atingida pela primeira parábola é 4. Se a altura da primeira é 4/3 da próxima, então a altura máxima da segunda será 3, da terceira 9/4 e da quarta 27/16.
Levando em conta que em cada parábola , suas distâncias são proporcionais pela razão

, Por definição de P.G , a altura máx.da última parábola , será : [Unparseable or potentially dangerous latex formula. Error 6 ] .
JU201015 escreveu:Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8.
Correto .
JU201015 escreveu:Concluindo, eu sei que o Yv da terceira função será 27/16 e as raízes 6 e 8. Mas não consigo montar a
equação da quarta parábola. Me ajudem?
Por favor , leia novamente o texto . E veja a definição de P.G .
Ressaltando que a parábola pode ser escrita na forma fatorada :

são raízes .
Não tempo + p/ dar atenção .Prometo mais tarde voltar aq , p/ concluir algumas observações .
Ok =D
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Seg Nov 19, 2012 20:01
JU201015 , boa tarde . hoje a caminho da faculdade , pensei nesta questão e há algumas observações a ser feita ,há uma possibilidade de erro na interpretação pela minha pessoa . Meu tempo etstar escasso mas gostaria de ajudar mis tarde , mas deixo a vontade os demais usuários do fórum ajudar .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Seg Nov 19, 2012 21:40
Avaliei aqui . Seu raciocínio estar parcialmente certo .Vamos começa por aqui . Como vc disse , " Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8 . "
Isto é , as raízes da quarta parábola são

.
Lembrando que podemos reescrever a equação na forma fatorada ,segue que :

.
Através do

sabemos que por um lado

.
Entretanto , sabemos que o a altura máxima de cada parábola é 4/3 da anterior . Por P.G temos que ,

.
Assim, a quarta parabola será :

.
Se você tem recursos de ver isto geometricamente ,o geogebra é muito bom . Este exercício é interessante no ponto de vista físico a trajetória que a bola faz descrito ao longo das parábolas .
Comente qualquer coisa aí .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por JU201015 » Ter Nov 20, 2012 11:13
santhiago escreveu:Avaliei aqui . Seu raciocínio estar parcialmente certo .Vamos começa por aqui . Como vc disse , " Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8 . "
Isto é , as raízes da quarta parábola são

.
Lembrando que podemos reescrever a equação na forma fatorada ,segue que :

.
Através do

sabemos que por um lado

.
Entretanto , sabemos que o a altura máxima de cada parábola é 4/3 da anterior . Por P.G temos que ,

.
Assim, a quarta parabola será :

.
Se você tem recursos de ver isto geometricamente ,o geogebra é muito bom . Este exercício é interessante no ponto de vista físico a trajetória que a bola faz descrito ao longo das parábolas .
Comente qualquer coisa aí .
Obrigada por responder e, sorry por tomar seu tempo rsrs Mas se der, me tira umas dúvidas?
Como eu chego no gabarito que é -27/16(x-6)(x-8)? De acordo com o que eu tinha feito sobre a altura máxima de cada parábola, a altura da quarta seria 27/16. Como eu poderia encontrar "a" com a altura máxima, que é 27/16? Eu tentei igualar com Yv assim:

Se substituíssemos os valores da equação

daria certo?
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Ter Nov 20, 2012 17:35
Altura da primeira parábola :
Altura da segunda parábola :
Altura da terceira parábola :
Altura da quarta parábola :

.
Perceba que todo esse processo é oriundo de :

.
Agora calculando o

por ,

.Calculando achará

.
Desculpa , não estou conseguindo chegar no gabarito . Vou ficar te devendo esta ..
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Ter Nov 20, 2012 21:47
Santhiago,
há um lapso no enunciado da
Ju. O primeiro e o segundo toque no chão formam a primeira parábola, e ela é a maior. Então a próxima parábola (segunda) não poderá ter a altura maior que a anterior, mas de acordo com o enunciado é

.

A equação é dada por:

Portanto,

Daí,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por e8group » Qua Nov 21, 2012 06:51
Bom dia danjr5 , Muito obrigado . Realmente

, logo a

da próxima parábola será maior que dá anterior . Isto não pode ser verdade .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação - Dúvida básica sobre a proporcionalidade de equação
por FelipeGM » Qui Jan 12, 2012 19:05
- 4 Respostas
- 7721 Exibições
- Última mensagem por FelipeGM

Sáb Jan 14, 2012 13:16
Álgebra Elementar
-
- Equação - como montar a equação desse problema?
por _Manu » Qua Jul 04, 2012 03:37
- 7 Respostas
- 13216 Exibições
- Última mensagem por _Manu

Qui Jul 05, 2012 01:49
Sistemas de Equações
-
- [Equação polinomial] Ajuda com essa equação?
por Mkdj21 » Sáb Jan 26, 2013 16:19
- 1 Respostas
- 13019 Exibições
- Última mensagem por young_jedi

Dom Jan 27, 2013 17:15
Equações
-
- [Equação da reta] Encontrando equação paramétrica.
por Vitor Sanches » Qua Jun 26, 2013 17:54
- 0 Respostas
- 6091 Exibições
- Última mensagem por Vitor Sanches

Qua Jun 26, 2013 17:54
Geometria Analítica
-
- Equação - Como resolver problema com equação
por macedo1967 » Seg Set 25, 2017 10:13
- 3 Respostas
- 8707 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:10
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.