• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distância entre pontos no ciclo trigonométrico.

Distância entre pontos no ciclo trigonométrico.

Mensagempor Sobreira » Dom Nov 18, 2012 17:44

Bom,
Estava tentando resolver este exercício de trigonometria e sinceramente não consegui.Segue:
Determine, no ciclo trigonométrico, a distância entre os pontos correspondentes aos números dados:

\frac{5\pi}{6} e \frac{7\pi}{6}

O que eu fiz:
Transformei estas medidas angulares de radianos para graus (para ter uma noção do posicionamento no ciclo trigonométrico)

\frac{5\pi}{6}=150°

\frac{7\pi}{6}=210°

Então diminuí 210° de 150° (a fim de verificar qual o arco formado entre eles)=60° em rad=\frac{\pi}{3}
Então, como \alpha=\frac{\ell}{r}, e como quando, um arco está contido em uma circunferência cujo raio vale 1 (ciclo trigonométrico) o comprimento do arco é igual ao ângulo central correspondente \left(\frac{\pi}{3} \right)...Cheguei a resposta igual a 1.0471.
Mas segundo o livro é 1 a resposta.
Há outros exercícios também:

\frac{\pi}{6} e \frac{3\pi}{4}

\frac{\pi}{2} e \frac{5\pi}{4}
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Distância entre pontos no ciclo trigonométrico.

Mensagempor young_jedi » Dom Nov 18, 2012 17:53

voce encontrou o angulo entre eles que é igual a 60º mais a distancia entre os dois pontos é uma reta e não o arco formado pelo angulo, levando em consideração que o raio do circulo trigonometrico é igual a 1, sabemos que os dois pontos estão a uma distancia de 1 sendo que o angulo entre eles é 60º, então concluimos que os dois pontos formam com a origem do sistema um triangulo equilatero, com isso concluimos que a distancia dos dois pontos é 1.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Distância entre pontos no ciclo trigonométrico.

Mensagempor Sobreira » Dom Nov 18, 2012 18:13

E nestes casos aki abaixo como ficaria a resposta??

\frac{\pi}{6} e \frac{7\pi}{6}

\frac{\pi}{4} e \frac{3\pi}{4}

\frac{\pi}{2} e \frac{5\pi}{4}

Pois sinceramente, ainda não entendi!!
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Distância entre pontos no ciclo trigonométrico.

Mensagempor young_jedi » Dom Nov 18, 2012 19:41

circ.png
circ.png (4.4 KiB) Exibido 4059 vezes


calculando para o primeiro exemplo que voce deu

\pi/6 vale 30º e 7\pi/6 vale 210º

eles estão representados na figura pelos pontos vermelhos, da pra perceber que o ponto do 210º faz um angulo de 30º com o eixo x assim da pra perceber que, se traçarmos uma reta do ponto um ate o ponto dois ela passa pelo centro do circulo trigonometrico que tem raio igual a 1 portanto a distancia é igual a diagonal do circulo e consequentemente equivale a 2

para o outro exemplo nos temos que

circ.png
circ.png (4.33 KiB) Exibido 4059 vezes


\pi/4 vale 45º e 3\pi/4 vale 135º

o angulo entre eles portanto, vale 90º
se desenharmos ele no circulo trigonometrico vamos ver que eles formam um triganul o retangulo com a origem sendo que o angulo reto esta na origem portanto a distancia entre os pontos pode ser obtido por pitagoras

d^2=1^2+1^2

d=\sqrt2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Distância entre pontos no ciclo trigonométrico.

Mensagempor Sobreira » Dom Nov 18, 2012 23:59

Obrigado.
Agora sim entendi. :y:
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: