• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação]-FGV-SP

[Equação]-FGV-SP

Mensagempor SCHOOLGIRL+T » Sáb Nov 17, 2012 18:20

Na equação 1+\frac{1}{1+{x}^{2}}+\frac{1}{{(1+{x}^{2})}^{2}}+.....=2, o 1º membro é a soma dos termos de uma progressão geométrica infinita. A soma das raízes da equação é?
Não sei como se faz. Alguém me ajuda?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação]-FGV-SP

Mensagempor DanielFerreira » Sáb Nov 17, 2012 18:27

Primeiro membro: P.G

\\ \begin{cases} a_1 = 1 \\ q = \frac{1}{1 + x^2} \\ S_n = \end{cases} \\\\\\ S_n = \frac{a_1}{1 - q} \Rightarrow S_n = \frac{1}{1 - \frac{1}{1 + x^2}} \Rightarrow S_n = \frac{1}{\frac{x^2}{1 + x^2}} \Rightarrow \boxed{S_n = \frac{1 + x^2}{x^2}}


Daí,

\\ \frac{1 + x^2}{x^2} = 2 \\\\ 2x^2 = 1 + x^2 \\\\ x^2 = 1 \\\\ \boxed{\boxed{x = \pm 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação]-FGV-SP

Mensagempor SCHOOLGIRL+T » Dom Nov 18, 2012 12:18

danjr5 escreveu:Primeiro membro: P.G

\\ \begin{cases} a_1 = 1 \\ q = \frac{1}{1 + x^2} \\ S_n = \end{cases} \\\\\\ S_n = \frac{a_1}{1 - q} \Rightarrow S_n = \frac{1}{1 - \frac{1}{1 + x^2}} \Rightarrow S_n = \frac{1}{\frac{x^2}{1 + x^2}} \Rightarrow \boxed{S_n = \frac{1 + x^2}{x^2}}


Daí,

\\ \frac{1 + x^2}{x^2} = 2 \\\\ 2x^2 = 1 + x^2 \\\\ x^2 = 1 \\\\ \boxed{\boxed{x = \pm 1}}


Muito obrigada Danjr5. Ótima explicação!
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação]-FGV-SP

Mensagempor DanielFerreira » Dom Nov 18, 2012 13:09

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: