• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Geométrica]-PUC-SP

[Progressão Geométrica]-PUC-SP

Mensagempor JU201015 » Sáb Nov 17, 2012 16:38

Numa progressão geométrica a diferença entre o 2º e o 1º termos é 9 e a diferença entre o 5º e o 4º termos é 576. O primeiro termo da progressão é?
Eu sei o raciocínio, o problema é que não sei fazer as contas. Me ajudem?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica]-PUC-SP

Mensagempor DanielFerreira » Sáb Nov 17, 2012 17:15

\\ \begin{cases} a_2 - a_1 = 9 \\ a_5 - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1 \cdot q - a_1 = 9 \\ a_4 \cdot q - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1(q - 1) = 9 \Rightarrow (q - 1) = \frac{9}{a_1} \\\\ a_4(q - 1) = 576 \Rightarrow (q - 1) = \frac{576}{a_4} \end{cases} \\\\\\ \frac{9}{a_1} = \frac{576}{a_4} \Rightarrow 9a_4 = 576a_1 \Rightarrow a_4 = 64a_1 \Rightarrow \cancel{a_1} \cdot q^3 = 64 \cdot \cancel{a_1} \Rightarrow \boxed{q = 4}

Consegue terminar?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Progressão Geométrica]-PUC-SP

Mensagempor JU201015 » Sáb Nov 17, 2012 17:22

danjr5 escreveu:\\ \begin{cases} a_2 - a_1 = 9 \\ a_5 - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1 \cdot q - a_1 = 9 \\ a_4 \cdot q - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1(q - 1) = 9 \Rightarrow (q - 1) = \frac{9}{a_1} \\\\ a_4(q - 1) = 576 \Rightarrow (q - 1) = \frac{576}{a_4} \end{cases} \\\\\\ \frac{9}{a_1} = \frac{576}{a_4} \Rightarrow 9a_4 = 576a_1 \Rightarrow a_4 = 64a_1 \Rightarrow \cancel{a_1} \cdot q^3 = 64 \cdot \cancel{a_1} \Rightarrow \boxed{q = 4}

Consegue terminar?


Sim, obrigada. Encontrei a1=3.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica]-PUC-SP

Mensagempor DanielFerreira » Sáb Nov 17, 2012 17:38

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.