• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Geométrica]-PUC-SP

[Progressão Geométrica]-PUC-SP

Mensagempor JU201015 » Sáb Nov 17, 2012 16:38

Numa progressão geométrica a diferença entre o 2º e o 1º termos é 9 e a diferença entre o 5º e o 4º termos é 576. O primeiro termo da progressão é?
Eu sei o raciocínio, o problema é que não sei fazer as contas. Me ajudem?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica]-PUC-SP

Mensagempor DanielFerreira » Sáb Nov 17, 2012 17:15

\\ \begin{cases} a_2 - a_1 = 9 \\ a_5 - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1 \cdot q - a_1 = 9 \\ a_4 \cdot q - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1(q - 1) = 9 \Rightarrow (q - 1) = \frac{9}{a_1} \\\\ a_4(q - 1) = 576 \Rightarrow (q - 1) = \frac{576}{a_4} \end{cases} \\\\\\ \frac{9}{a_1} = \frac{576}{a_4} \Rightarrow 9a_4 = 576a_1 \Rightarrow a_4 = 64a_1 \Rightarrow \cancel{a_1} \cdot q^3 = 64 \cdot \cancel{a_1} \Rightarrow \boxed{q = 4}

Consegue terminar?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Progressão Geométrica]-PUC-SP

Mensagempor JU201015 » Sáb Nov 17, 2012 17:22

danjr5 escreveu:\\ \begin{cases} a_2 - a_1 = 9 \\ a_5 - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1 \cdot q - a_1 = 9 \\ a_4 \cdot q - a_4 = 576 \end{cases} \\\\\\ \begin{cases} a_1(q - 1) = 9 \Rightarrow (q - 1) = \frac{9}{a_1} \\\\ a_4(q - 1) = 576 \Rightarrow (q - 1) = \frac{576}{a_4} \end{cases} \\\\\\ \frac{9}{a_1} = \frac{576}{a_4} \Rightarrow 9a_4 = 576a_1 \Rightarrow a_4 = 64a_1 \Rightarrow \cancel{a_1} \cdot q^3 = 64 \cdot \cancel{a_1} \Rightarrow \boxed{q = 4}

Consegue terminar?


Sim, obrigada. Encontrei a1=3.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica]-PUC-SP

Mensagempor DanielFerreira » Sáb Nov 17, 2012 17:38

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}