• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmos]

[Logaritmos]

Mensagempor thamysoares » Sex Nov 16, 2012 11:27

Resolva o sistema de equações nas incógnitas x e y.
{3logx+logy=1
{-2logx+\frac{1}{3}logy=0
Me ajudem? Não sei nem logaritmo direito quanto mais logaritmo em um sistema. Por favor.
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmos]

Mensagempor e8group » Sex Nov 16, 2012 11:55

isole , log(y) ou log(x) , depois substitua na segunda equação . Resolva para a variável que restar e depois volte na primeira equação e resolva p/ a outra incógnita .

EX:

Somando -  3 \cdot log(x) , na primeira equação : 3 \cdot log(x) +  log(y) + ( -  3 \cdot log(x)) =  1 - 3 \cdot log(x)  \implies    log(y) = 1  - 3 \cdot log(x)

Agora substitua na segunda equação .

Consegue terminar ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmos]

Mensagempor thamysoares » Sex Nov 16, 2012 13:49

santhiago escreveu:isole , log(y) ou log(x) , depois substitua na segunda equação . Resolva para a variável que restar e depois volte na primeira equação e resolva p/ a outra incógnita .

EX:

Somando -  3 \cdot log(x) , na primeira equação : 3 \cdot log(x) +  log(y) + ( -  3 \cdot log(x)) =  1 - 3 \cdot log(x)  \implies    log(y) = 1  - 3 \cdot log(x)

Agora substitua na segunda equação .

Consegue terminar ?


-2logx+\frac{1}{3}(1-3logx)=0
-2logx+\frac{1}{3}-logx=0
\frac{log{x}^{-2}}{x}=\frac{-1}{3}
E então?
Eu não sei como se faz =[
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmos]

Mensagempor e8group » Sex Nov 16, 2012 16:31

\begin{cases} 3 log(x) + log(y) = 1  \\  - 2log(x)+ \frac{log(y)}{3} = 0\end{cases} .


No tópico , acima , vimos que log(y) =  1   - 3 log(x) . Susbstituindo na segunda equação ,

- 2log(x) + \frac{1}{3} ( 1   - 3 log(x) ) =  0 .

Multiplicando toda equação por 3 ,


- 6 log(x) + 1 - 3log(x)  =  0  =  1  - 9 log(x)   = log(10) - 9 log(x) =  log(10/x^9) = 0

Sabemos que log(a) = 0 quando a = 1

Com isso , log(10/x^9) = 0  \iff 10/x^9 = 1   \iff 10 = x^9  \iff x = 10^{1/9} = \sqrt[9]{10} .


Para resolver para y , isole log(x) da relação 1  - 9 log(x) = 0 , susbstitua em 1  - 3 log(x) = log(y) . Faça a mesma análise e resolva p/ y .


Por favor revise seus cálculos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmos]

Mensagempor thamysoares » Sex Nov 16, 2012 18:17

santhiago escreveu:\begin{cases} 3 log(x) + log(y) = 1  \\  - 2log(x)+ \frac{log(y)}{3} = 0\end{cases} .


No tópico , acima , vimos que log(y) =  1   - 3 log(x) . Susbstituindo na segunda equação ,

- 2log(x) + \frac{1}{3} ( 1   - 3 log(x) ) =  0 .

Multiplicando toda equação por 3 ,


- 6 log(x) + 1 - 3log(x)  =  0  =  1  - 9 log(x)   = log(10) - 9 log(x) =  log(10/x^9) = 0

Sabemos que log(a) = 0 quando a = 1

Com isso , log(10/x^9) = 0  \iff 10/x^9 = 1   \iff 10 = x^9  \iff x = 10^{1/9} = \sqrt[9]{10} .


Para resolver para y , isole log(x) da relação 1  - 9 log(x) = 0 , susbstitua em 1  - 3 log(x) = log(y) . Faça a mesma análise e resolva p/ y .


Por favor revise seus cálculos .


Bom, eu tentei fazer como você disse. Veja se está correto, por favor:
3log(x)+log(y)=1
3log(x)=1-log(y)
Então eu multipliquei por -2 pra substituir na outra equação, que eu multipliquei por -3(nem sei se pode fazer isso). Assim:
-6log(x)=1-log(y)
\Rightarrow-2log(x)+\frac{1}{3}log(y)=0
-6log(x)-log(y)=0
\left((1-log(y) \right)-log(y)=0
1-2log(y)
log(10)-2log(y)=0
log\left(\frac{10}{{y}^{2}} \right)=0
\frac{10}{{y}^{2}}=1
10={y}^{2}
y=\sqrt[]{10}
E então?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmos]

Mensagempor e8group » Sex Nov 16, 2012 19:31

Cuidado ! você cometeu um erro grave que estar alterando o resultado .

Veja o certo ,

Multiplicando ambos lados da igualdade por - 2 .

Vamos obter , - 2( 3log(x) ) =  - 2 ( 1 - log(y) )  =  - 6 log(x) =  - 2  + 2 log(y )

Perceba que , basta multiplicar pelo seu inverso , que vamos desfazer a operação anterior , isto é , multiplique toda toda equação por 1/(-2)  = (-2)^{-1} que voltará para a equação original .

Observe o seu desenvolvimento e faça uma comparação .

Mas , como já temos log(y) em função de log(x) , lembrando log(y) = 1 - 3 log(x) ( Observe minha 1ª resposta ao tópico ) e ressaltando também já temos log(x) = 1/9 ( Observe minha 2ª resposta ao tópico ) .


Sendo assim ,

log(y) = 1 - 3log(x)  =  1 - 3 \cdot (\frac{1}{9} ) =  1 - \frac{1}{3}  =   \frac{3}{3} (1 - \frac{1}{3} ) =  \frac{1}{3} (3 - 1 ) =  \frac{2}{3} .


Daí ,

10^{log(y) } =  10^{2/3}


e

Portanto ,

y = 10^{2/3}  =  (10^2 )^{1/3}  =  \sqrt[3]{10^2} = \sqrt[3]{100}


S = \left\{ (\sqrt[9]{10} ,  \sqrt[3]{100}  ) \right \}


Qualquer coisa comente .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmos]

Mensagempor thamysoares » Sex Nov 16, 2012 19:56

santhiago escreveu:Cuidado ! você cometeu um erro grave que estar alterando o resultado .

Veja o certo ,

Multiplicando ambos lados da igualdade por - 2 .

Vamos obter , - 2( 3log(x) ) =  - 2 ( 1 - log(y) )  =  - 6 log(x) =  - 2  + 2 log(y )

Perceba que , basta multiplicar pelo seu inverso , que vamos desfazer a operação anterior , isto é , multiplique toda toda equação por 1/(-2)  = (-2)^{-1} que voltará para a equação original .

Observe o seu desenvolvimento e faça uma comparação .

Mas , como já temos log(y) em função de log(x) , lembrando log(y) = 1 - 3 log(x) ( Observe minha 1ª resposta ao tópico ) e ressaltando também já temos log(x) = 1/9 ( Observe minha 2ª resposta ao tópico ) .


Sendo assim ,

log(y) = 1 - 3log(x)  =  1 - 3 \cdot (\frac{1}{9} ) =  1 - \frac{1}{3}  =   \frac{3}{3} (1 - \frac{1}{3} ) =  \frac{1}{3} (3 - 1 ) =  \frac{2}{3} .


Daí ,

10^{log(y) } =  10^{2/3}


e

Portanto ,

y = 10^{2/3}  =  (10^2 )^{1/3}  =  \sqrt[3]{10^2} = \sqrt[3]{100}


S = \left\{ (\sqrt[9]{10} ,  \sqrt[3]{100}  ) \right \}


Qualquer coisa comente .


Muitíssimo obrigada =D
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?