por Matheus Lacombe O » Dom Nov 11, 2012 21:49
1.1) - Olá pessoal. Estou cursando a primeira fase de eng. mecânica e dentre os livros didáticos recomendados está o
"Cálculo - Volume I de Howard Anton e cia." 1.2) - E agora, no meio do percurso, senti a necessidade de fazer uma revisão sobre trigonometria - conteúdo este que não sou lá estas coisas - e eis que me deparo com um entrave. Não consigo entender a seção
"Relações entre comprimento de arco, ângulo, raio e área" do apêndice
"Revisão de Trigonometria", páginas: A2 e A3. Primeiramente, gostaria de descrever a situação exposta no livro e em seguida,
faço minhas observações e digo o que não entendi, no final.
1.3) - O autor inicia a sessão explanando sobre uma relação da geometria plana que afirma:
"Para dois círculos concêntricos, a razão entre os comprimentos de arco subentendidos por um ângulo central é igual à razão dos raios correspondentes." (O que
obviamente permite concluir que:)
fórmula-1:
1.4) - Em seguida afirma que:
"Em particular, se 's' for o comprimento de arco subentendido sobre um círculo de raio 'r' por um ângulo '
?' radianos, então, comparando com o comprimento de arco subentendido pelo mesmo ângulo sobre um círculo de raio igual a 1(um), obtemos:"
fórmula-2:
1.5) - Ele observa na lateral da página que:
"Se
? estiver em radianos, então:"
fórmula-3:
Dúvida:1) - Eu simplesmente não consigo entender como o sujeito chega a fórmula-2 e muito menos a fórmula-32) - Ele fala em comparação ("[..]comparando com o comprimento de arco[..]", citação de 1.4 ): o que exatamente seria esta comparação? Ele está lançando uma igualdade? Não entendi exatamente como transcrevo matematicamente o que ele disse.PS: Se talvez a dúvida seja idiota ou algo que o valha, por favor, deixem uma referência de algum site ou material que tenha explicação sobre o assunto.Obrigado pela atenção.
Abraços.
Att. Matheus L. Oliveira.
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por Matheus Lacombe O » Seg Nov 12, 2012 16:11
- Por favor, pessoal. Eu faço de tudo pra tentar enunciar bem as dúvidas - organizando o texto, adicionando imagens, observações, etc, etc - e praticamente sempre mostro a resolução de minhas tentativas.
- Por favor, alguém poderia fazer uma forcinha e me ajudar com esta dúvida?
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por replay » Seg Nov 12, 2012 18:26
Tem que ter paciencia, logo logo um voluntário aparece e irá sanar sua duvida. Aqui não demora mais de 24 hrs com uma duvida.
-
replay
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Dom Fev 19, 2012 23:43
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Nov 12, 2012 19:53
Matheus, acredito que esta aula do Nerckie irá ajudá-lo:
Área do Círculo e Afins. Na verdade seus problemas estão na geometria plana, não há trigonometria.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Angulo inscrito e arco capaz
por Ariel » Dom Nov 09, 2014 16:45
- 8 Respostas
- 4560 Exibições
- Última mensagem por Ariel

Qua Nov 12, 2014 11:52
Geometria Plana
-
- Angulo inscrito e arco capaz - 2
por Ariel » Sex Nov 21, 2014 23:46
- 4 Respostas
- 2857 Exibições
- Última mensagem por Ariel

Dom Nov 23, 2014 18:33
Geometria Plana
-
- Limites no Infinito - Encontre r > 0 para um dado épsilon
por elisafrombrazil » Sáb Jan 21, 2017 10:35
- 1 Respostas
- 4040 Exibições
- Última mensagem por e8group

Qui Fev 02, 2017 15:59
Cálculo: Limites, Derivadas e Integrais
-
- Integral para calcular arco
por neoreload » Sex Mar 20, 2015 07:04
- 2 Respostas
- 3087 Exibições
- Última mensagem por Russman

Seg Mar 23, 2015 01:55
Cálculo: Limites, Derivadas e Integrais
-
- [Comprimento de Arco] Deduzir funções para Integrar
por Mendes » Dom Ago 23, 2015 15:10
- 0 Respostas
- 1377 Exibições
- Última mensagem por Mendes

Dom Ago 23, 2015 15:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.