• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Resolução incorreta?

[Integrais] Resolução incorreta?

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 23:04

Resolvi o seguinte exercício mas não cheguei no resultado correto.

\int sen^2xcos^2xdx = \int \frac{1}{2}(1-cos2x)\frac{1}{2}(1+cos2x)dx

\int \frac{1}{2}-\frac{1}{2}cos2x.\frac{1}{2}+\frac{1}{2}cos2xdx

\frac{1}{2}\int dx - \frac{1}{4}\int cos2xdx+\frac{1}{2}\int cos2xdx

u=2x
du=2dx

\frac{1}{2}x-\frac{1}{8} \int cosudu+\frac{1}{4}\int cosudu

\frac{1}{2}x-\frac{1}{8}sen2x+\frac{1}{4}sen2x+C

O resultado correto é:

\frac{1}{8}x-\frac{1}{32}sen4x+C

O que eu fiz de errado?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Resolução incorreta?

Mensagempor MarceloFantini » Seg Nov 12, 2012 05:37

Note que

\sin^2 x \cos^2 x = (\sin x \cos x)^2 = \left( \frac{\sin (2x)}{2} \right)^2 = \frac{1}{4} \sin^2 (2x)

= \frac{1}{4} (1 - \cos^2 (2x)) = \frac{1}{4} \left( 1 - \left( \frac{1 + \cos (4x)}{2} \right) \right) = \frac{1}{8} - \frac{\cos(4x)}{8}.

Integrar agora é fácil. Você errou em algumas das transformações que fez, e na distributiva também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Resolução incorreta?

Mensagempor MrJuniorFerr » Seg Nov 12, 2012 12:29

Marcelo, pode por favor demonstrar meu erro na distributiva? Não sei onde errei...
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Resolução incorreta?

Mensagempor MarceloFantini » Seg Nov 12, 2012 19:21

Refiro-me a esta distributiva: (1 - \cos (2x))(1 + \cos (2x)). Isto é um produto notável: (a-b)(a+b) = a^2 -b^2. Se não percebesse, a conta é

(1 - \cos (2x))(1 + \cos (2x)) = 1 + \cos (2x) - \cos (2x) - \cos^2 (2x) = 1 - \cos^2 (2x).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Resolução incorreta?

Mensagempor MrJuniorFerr » Seg Nov 12, 2012 20:34

Obrigado Marcelo.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}