por Jessica Seno » Seg Nov 12, 2012 09:31
Bom dia pessoal,
Estou com uma dúvida quanto a uma questão do exame nacional de cursos(ENC) de 2003. A questão diz assim:
A integral imprópria

é convergente se, e somente se :
(A) p > 1
(B) p = 1
(C) p ? 1
(D) p < 1
(E) p > 0
Pelo que eu fui informada, uma integral imprópria é convergente se o limite existe e é um número real. Caso contrário, ela diverge. Mas como saberei quais das alternativas dada acima é a correta? Não entendi como eu processo para chegar em tal resultado...
Desde já agradeço pela atenção.
-
Jessica Seno
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Out 14, 2012 14:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por young_jedi » Seg Nov 12, 2012 09:49
pirmeiro voce faz a integração



temos que se p>1 então quando x tende para o infinito a expressão tende a zero, no entanto se p for menor que 1 então a expressão sera

esta expressão vai tender ao infinito quando x tende ao infinito
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Jessica Seno » Seg Nov 12, 2012 11:32
Muito obrigada pela ajuda...
-
Jessica Seno
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Out 14, 2012 14:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo de Áreas com Integral] Duvida sobre como começar
por effting » Ter Out 09, 2012 13:00
- 1 Respostas
- 1773 Exibições
- Última mensagem por effting

Ter Out 09, 2012 14:44
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Probleminha sobre integral
por fredyjorgesc » Seg Abr 01, 2013 21:36
- 1 Respostas
- 839 Exibições
- Última mensagem por fredyjorgesc

Seg Abr 01, 2013 21:37
Cálculo: Limites, Derivadas e Integrais
-
- [Dúvida ANOVA] Uma dúvida sobre a estatística correta
por gustamfar » Ter Mai 22, 2018 18:19
- 0 Respostas
- 10711 Exibições
- Última mensagem por gustamfar

Ter Mai 22, 2018 18:19
Estatística
-
- [Obm - 2003 ]
por chronoss » Seg Abr 22, 2013 20:16
- 19 Respostas
- 11611 Exibições
- Última mensagem por e8group

Seg Jul 08, 2013 21:26
Álgebra Elementar
-
- CN 2003
por Georges123 » Sáb Mai 18, 2013 16:39
- 1 Respostas
- 1406 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 17:46
Teoria dos Números
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.