• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Parábola e Área do Triângulo]

[Parábola e Área do Triângulo]

Mensagempor Mayra Luna » Dom Nov 11, 2012 14:21

A parábola de equação y = x^2 - 8x + 7 intercepta o eixo x nos pontos A e B e, o eixo y no ponto C. A área do triângulo ABC é
A) 9
B) 10,5
C) 18
D) 21
E) 42

Tentei dar um valor para o x para descobrir y, mas me compliquei mais. Como posso resolver?
Obrigada.
Mayra Luna
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Out 07, 2012 15:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Parábola e Área do Triângulo]

Mensagempor e8group » Dom Nov 11, 2012 15:08

Por favor , observe a figura em anexo . faça um seguinte , primeiro encontre os pontos de interseção com os eixos x e y . Ressaltando que um ponto que intercepta o eixo x tem a configuração (x,0) para x real diferente que zero e que intercepta y (0,y) para y real diferente que zero .

Para encontrar A e B , resolva y = 0 , isto é x^2  - 8x + 7 .

Para encontrar C só calcular y para x = 0 .

Próximo passo seria esboçar o gráfico . Assim vc , pode calcular a área do triângulo ABC . Quando vc esboçar o gráfico , considere um ponto O = (0,0 ) , você verá que a área pode ser expressa por \frac{|OC| \cdot |OB | }  {2}   -   \frac{|OC| \cdot |OA | }  {2}    =  A_{ABC} .

figura1.png
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Parábola e Área do Triângulo]

Mensagempor Mayra Luna » Dom Nov 11, 2012 17:10

Muuito obrigada!!!
Mas desse modo A \small abc = \frac{|B-A| . |C|}{2} daria o mesmo resultado.
Pode ser assim também, né?
Mayra Luna
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Out 07, 2012 15:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Parábola e Área do Triângulo]

Mensagempor e8group » Dom Nov 11, 2012 17:49

Se o resultado deu o mesmo , foi sorte . Para você calcular a área do triângulo do triângulo ABC precisará de uns dos ângulos internos para obter a altura relativa a um de seus segmento . Por exemplo , se h é altura relativa ao segmento \overline{AB} , teremos que A_{ABC}  =  \frac{ | AB| h }{2} .Mas para isso é necessário pelos um de seus ângulos internos . Mas como A_{ABC}  =   A_{BOC}  -   A_{AOC} e \overline{CO} é perpendicular ao segmentos \overline{OA} e \overline{OB} , isto é \overline{OC} é altura relativa aos segmentos \overline{OA} e \overline{OB} , logo será mais conveniente obter a área deste modo .

Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Parábola e Área do Triângulo]

Mensagempor Mayra Luna » Dom Nov 11, 2012 17:58

Ah, sim!
Muito obrigada! :-D
Mayra Luna
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Out 07, 2012 15:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.