• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral definida]

[Integral definida]

Mensagempor Crist » Dom Nov 11, 2012 16:40

Preciso resolver esta integral pelo metodo da substituição , mas não consigo chegar na igualdade dada.


\int_{0}^{5}x\sqrt[2]{1+x^2}dx = 921,342

[tex]u= 1+x^2du/2 = x dx[tex]2/6 \left( (1 +x^2 \right)^3/2 + c

fiz as devidas contas e substituições mas não consigo chegar nesse resultado, será que alguém pode me ajudar?
espero que entendam, pois ainda estou aprendendo a usar o latex
Crist
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Out 24, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Integral definida]

Mensagempor e8group » Dom Nov 11, 2012 17:27

Acredito que você fez foi isto ,


i) Fazendo , x^2 + 1     \implies du = 2x dx


ii) Daí , \int x\sqrt{x^2 +1}  dx =  \frac{1}{2}\int \sqrt{u} du     = \frac{ \sqrt{u^3} } {3}  +  c


iii) Voltando para variavel x , temos \int x\sqrt{x^2 +1}  =   \frac{ \sqrt{(x^2 + 1)^3} } {3}  +  c

iv) Conclusão , \int_{0} ^5  x\sqrt{x^2 +1}  dx =  \frac{\sqrt{(5^2 +1)^3} - 1}{3} =  \frac{26 \sqrt{26} - 1}{3}  \neq  921,342



Veja os códigos usados


i)
Código: Selecionar todos
x^2 + 1     \implies du = 2x dx


ii)
Código: Selecionar todos
\int x\sqrt{x^2 +1}  dx =  \frac{1}{2}\int \sqrt{u} du     = \frac{ \sqrt{u^3} } {3}  +  c 


iii)

Código: Selecionar todos
\int x\sqrt{x^2 +1}  =   \frac{ \sqrt{(x^2 + 1)^3} } {3}  +  c 


iv)

Código: Selecionar todos
\int_{0} ^5  x\sqrt{x^2 +1}  dx =  \frac{\sqrt{(5^2 +1)^3} - 1}{3} =  \frac{26 \sqrt{26} - 1}{3}  \neq  921,342 



Cada código foi inserindo dentro de [ tex ] ....... [ / tex ] . ( sem espaço como estar escrito )

Realmente não consegui chegar no resultado , talvez há um erro de digitação . Por favor conferi o mesmo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral definida]

Mensagempor Crist » Dom Nov 11, 2012 19:26

Não há erro de digitação, refiz novamente e não chego ao resultado, vou ver com minha professora deve ter um erro na questão, muito obrigada pela ajuda.
Crist
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Out 24, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Integral definida]

Mensagempor Crist » Seg Nov 12, 2012 21:15

realmente o professor errou na hora de postar o resultado, na verdade é 43,86
Crist
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Out 24, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.