• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITE

LIMITE

Mensagempor SILMARAKNETSCH » Sex Nov 09, 2012 09:30

Lim x + 1
x - ² ---------
4x - 3



obs onde esta um traço em baixo de lim é a flexinha perdoem aprenderei a fazer corretamente
Editado pela última vez por SILMARAKNETSCH em Sex Nov 09, 2012 09:34, em um total de 1 vez.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: LIMITE

Mensagempor SILMARAKNETSCH » Sex Nov 09, 2012 09:33

lim x+1
-------------
x - ² 4x - 3


este é o formato só em baixo do limite é que não consegui colocar a seta ainda não sei mexer com as fórmulas prontas
então a questão é na primeira linha x+1 e debaixo 4x - 3
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: LIMITE

Mensagempor e8group » Sex Nov 09, 2012 10:14

Utilizando latex , veja como fica o numerador e denominador
Código: Selecionar todos
\frac{x+1}{x^2  - 4x - 3 }
, resultado : \frac{x+1}{x^2  - 4x - 3 } .

OBS. o Código deve estar entre .

Para limites veja como fica ,
Código: Selecionar todos
\lim_{x\to a }   
. Resultado : \lim_{x\to a }

Como é iniciante , utilize este site http://www.codecogs.com/latex/eqneditor.php?lang=pt-br , lá há um menu com as fórmulas que auxiliara vc até acostumar com o padrão . Além disso , automaticamente a medida que vc digitar os códigos lá será compilado em qual quer formato de imagem , (gif , png , etc ) .


Por favor ,corrija seu tópico para podermos ajudar vc .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: LIMITE

Mensagempor MarceloFantini » Sex Nov 09, 2012 10:19

Bom dia Silmara. Por favor tente usar LaTeX nas suas postagens. Se entendi bem, para este limite por exemplo o código seria

Código: Selecionar todos
\lim_{x \to 2} \frac{x+1}{4x-3}


que nos dá

\lim_{x \to 2} \frac{x+1}{4x-3}.

O resultado deste limite é direto, pois não temos indeterminações. Assim

\lim_{x \to 2} \frac{x+1}{4x -3} = \frac{\lim_{x \to 2} x+ 1}{\lim_{x \to 2} 4x-3 } = \frac{2+1}{4 \cdot 2 -3} = \frac{3}{5}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: LIMITE

Mensagempor SILMARAKNETSCH » Sex Nov 09, 2012 12:08

agradeço demais depois vou tentar colocar mais alguns problemas que tem infinito para ver se consigo abraço!!! a maior caridade esta no ato de querer ajudar ganhei uma bolsa ENEM depois de 29 anos sem estudar faço administração mas a matemática esta sendo minha dificuldade se não aprender vou ficar de DP mas colocarei exercícios aqui e irei treinar trocando os numeros para estar fera na prova do fim do mes.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.