por spektroos » Qui Nov 08, 2012 19:02
Dada a matriz A=

, determine a soma dos valores de x para que det(A + x.I), onde I é a matriz identidade de ordem 3.
-
spektroos
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Seg Set 24, 2012 01:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Civil
- Andamento: cursando
por MarceloFantini » Qui Nov 08, 2012 19:13
Falta algo no enunciado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por spektroos » Qui Nov 08, 2012 19:21
Amigo, esta igual o enunciado da questao passada pela minha professora.
-
spektroos
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Seg Set 24, 2012 01:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Civil
- Andamento: cursando
por MarceloFantini » Qui Nov 08, 2012 19:25
spektroos escreveu:...determine a soma dos valores de x para que det(A + x.I), onde I é a matriz identidade de ordem 3.
Determine a soma dos valores para que o determinante...? Falta alguma coisa. Seja nulo? Seja diferente de zero?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por spektroos » Qui Nov 08, 2012 19:35
Talvez seja por isso que nao entendi como resolver... Obrigado pela observacao, irei ver isso com ela na sua proxima aula.
-
spektroos
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Seg Set 24, 2012 01:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Civil
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6771 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- Matriz & Determinante
por Colton » Qua Out 13, 2010 12:56
- 1 Respostas
- 4957 Exibições
- Última mensagem por Colton

Qua Out 20, 2010 10:02
Matrizes e Determinantes
-
- matriz e determinante
por arianos » Qui Mai 10, 2012 14:56
- 6 Respostas
- 6910 Exibições
- Última mensagem por DanielFerreira

Sáb Mai 19, 2012 10:15
Matrizes e Determinantes
-
- Determinante de uma matriz!!!!
por Razoli » Sáb Abr 06, 2013 15:52
- 3 Respostas
- 5374 Exibições
- Última mensagem por e8group

Sáb Abr 06, 2013 19:40
Matrizes e Determinantes
-
- Determinante da matriz!
por Razoli » Seg Abr 08, 2013 00:10
- 1 Respostas
- 3073 Exibições
- Última mensagem por Razoli

Seg Abr 08, 2013 00:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.