• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação diferencial - 1

Equação diferencial - 1

Mensagempor Cleyson007 » Qua Nov 07, 2012 21:09

Calcule \int_{}^{}f(x)\,dx = F(x) + c. Em seguida calcule c para que a solução y satisfaça a condição extra apresentada, para

f(x)={cos}^{2}x,\,\,\,\,\,y(\pi)=\frac{\pi}{2}

Por favor, explique-me de uma maneira simples de se entender. Tenho prova de equações diferenciais esse período, e estou perdido na matéria.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 12:40

substituindo f(x)

y=\int cos^2x.dx

utilizando a relação trigonometrica

cos^2x=\frac{1+cos2x}{2}

y=\int \left(\frac{1+cos(2x)}{2}\right).dx

integrando

y=\frac{x}{2}+\frac{sen(2x)}{4}+c

como y(\pi)=\pi/2

y(\pi)=\frac{\pi}{2}+\frac{sen(2\pi)}{4}+c=\frac{\pi}{2}

\frac{\pi}{2}+c=\frac{\pi}{2}

portanto c=0
então a resolução da equação fica

y=\frac{x}{2}+\frac{sen(2x)}{4}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor Cleyson007 » Qui Nov 08, 2012 15:46

Young_jedi, pode desenvolver essa parte para mim cos² x = 1 + cos 2x / 2 ?

Agradeço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 15:57

Opa tranquilo Cleyson007

cos(x+x)=cos(x).cos(x)-sen(x).sen(x)

cos(2x)=cos^2(x)-sen^2(x)

mais nos sabemos que

1=cos^2x+sen^2x

somando as duas equações

\begin{array}{ccc}cos(2x)&=&cos^2(x)-sen^2(x)\\1&=&cos^2x+sen^2x\end{array}

cos(2x)+1=2cos^2x

cos^2x=\frac{1+cos(2x)}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor Cleyson007 » Qui Nov 08, 2012 16:16

O processo algébrico não é difícil..

Sabe o que acontece? Estou me perdendo é na "manipulação" da artimanha. Nem me passou pela cabeça que teria de começar por aqui cos(x + x).

Dúvida aqui: y=\int_{}^{}\left(\frac{1+cos(2x)}{2} \right)\,dx

Poderia ser assim? y=\frac{1}{2}\int_{}^{}1+cos(2x)\,dx

Outra dúvida: Como surgiu o \frac{sen(2x)}{4} ?

Agradeço,

Cleyson007
Editado pela última vez por Cleyson007 em Qui Nov 08, 2012 16:20, em um total de 1 vez.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 16:19

Sim, pode ser assim
colocar as constantes para fora da integral facilita bastante

o sen(2x)/4 surgiu do processo de integração
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor Cleyson007 » Qui Nov 08, 2012 16:36

young_jedi escreveu:o sen(2x)/4 surgiu do processo de integração


Pode me explicar também o procedimento para se chegar em sen (2x) / 4 ?

Agradeço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 1

Mensagempor young_jedi » Qui Nov 08, 2012 16:50

primeiro eu separei em duas integrais

\frac{1}{2}\int 1+cos(2x)dx=\frac{1}{2}\left(\int 1.dx+\int cos(2x)dx\right)

eu fiz integração por substituição

a primeira integral é igual a x

para a segunda eu fiz esta substituição

u=2x

du=2.dx

\int cos(2x)dx=\int \frac{cos(u)du}{2}

\int \frac{cos(u)du}{2}=\frac{1}{2}\int cos(u)du

a intgral de cos(u) é sen(u) (como agente bem sabe de derivda)

\frac{1}{2}\int cos(u)du=\frac{1}{2}sen(u)

substituindo de volta o x

\frac{1}{2}sen(u)=\frac{1}{2}sen(2x)

agora voltando a integral principal

\frac{1}{2}\int 1+cos(2x)dx=\frac{1}{2}\left(x+\frac{sen(2x)}{2}\right)+c

\frac{1}{2}\left(x+\frac{sen(2x)}{2}\right)+c=\frac{x}{2}+\frac{sen(2x)}{4}+c
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação diferencial - 1

Mensagempor MarceloFantini » Qui Nov 08, 2012 17:05

Pela regra da cadeia, lembre-se que (\sin x)' = \cos x. Agora pela regra da cadeia (\sin (2x))' = 2 \cos (2x). Como no caso temos \frac{\cos (2x)}{2} = \frac{(\sin (2x))'}{4}, então \int \frac{\cos (2x)}{2} \,  dx = \frac{\sin (2x)}{4} + C.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?