• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INEQUAÇÃO] ajuda

[INEQUAÇÃO] ajuda

Mensagempor danielrodrigues » Seg Nov 05, 2012 19:50

Olá pessoal eu novamente...tem outro exercicio de inequação que nao consigo resolver...por favor se puderem me ajudar..
{\sqrt[5]{1,1}}^{{x}^{2}+x+1} < 1
tentei resolver mas nao saiu nada...
Obrigado!!
Editado pela última vez por danielrodrigues em Seg Nov 05, 2012 21:38, em um total de 1 vez.
danielrodrigues
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 08, 2012 11:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [INEQUAÇÃO] ajuda

Mensagempor MarceloFantini » Seg Nov 05, 2012 21:08

Você tem certeza que a inequação é (\sqrt[5]{1,1})^{x^2 +x+1} \leq 3?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [INEQUAÇÃO] ajuda

Mensagempor danielrodrigues » Seg Nov 05, 2012 21:37

cara foi mal!!! é assim
(\sqrt[5]{1,1})^{x^2 +x+1} < 1
danielrodrigues
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 08, 2012 11:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [INEQUAÇÃO] ajuda

Mensagempor MarceloFantini » Seg Nov 05, 2012 22:15

Bom, sabemos que qualquer número real diferente de zero elevado a zero é um, e como a função exponencial é estritamente crescente, isto significa que para que (\sqrt[5]{1,1})^{x^2 +x +1} seja menor que um devemos ter que o expoente é menor que zero, portanto x^2 +x + 1<0. Calcule o discriminante e conclua.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [INEQUAÇÃO] ajuda

Mensagempor danielrodrigues » Ter Nov 06, 2012 00:11

meu amigo...o discriminante deu negativo... é isso mesmo?
DELTA = -3
danielrodrigues
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 08, 2012 11:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [INEQUAÇÃO] ajuda

Mensagempor MarceloFantini » Ter Nov 06, 2012 01:06

Sim, é isto mesmo. Como o coeficiente da maior potência é positivo significa que a parábola tem "boca para cima", ou seja, nunca é negativa. Portanto, o conjunto solução é o vazio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.