por ViniRFB » Seg Nov 05, 2012 15:23
Olá, amigos de fé.
Considere o sistema de equações lineares dado por:

Sabendo-se que o sistema tem solução única para r

0 e r

, então o valor de x é igual a
Resposta = -1/ r
Minha dúvida é a seguinte:
Resolvo primeiro a matriz dos coeficiente e tal e depois a matriz DX. Eu quero saber o que a questão pede referindo-se a r

0 e r

Não sei como resolver com essas indagações.
Grato
-
ViniRFB
- Usuário Parceiro

-
- Mensagens: 76
- Registrado em: Dom Fev 19, 2012 22:16
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Seg Nov 05, 2012 16:12
Calcule o determinante da matriz incompleta:

Calculo do determinante de x:

Logo,

Editado pela última vez por
Cleyson007 em Ter Nov 06, 2012 14:05, em um total de 2 vezes.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por ViniRFB » Seg Nov 05, 2012 22:07
Cleyson007 escreveu:Calcule o determinante da matriz incompleta:
\begin{vmatrix}
1 & 1 & 1 \\
1 & -1 & r \\
r & 2 & 1
\end{vmatrix}\Rightarrow{r}^{2}-r
Calculo do determinante de x:
\begin{vmatrix}
0 & 1 & 1 \\
2 & -1 & r \\
-1 & 2 & 1
\end{vmatrix}\Rightarrow1-r
Logo, x=\frac{1-r}{{r}^{2}-r}=\frac{1-r}{r(r-1)}\Rightarrow\,x=\frac{-1}{r}
N tive como entender, pois os códigos que usaste creio que estão inativos.
Agradeço de ante mão a ajuda.
Grato
ViniRFb
-
ViniRFB
- Usuário Parceiro

-
- Mensagens: 76
- Registrado em: Dom Fev 19, 2012 22:16
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Ter Nov 06, 2012 14:07
ViniRFB, houve um probleminha com o LateX.. Editei a resposta! Agora está tudo ok.
Atenciosamente,
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sistemas Lineares
por Cleyson007 » Sáb Mai 03, 2008 01:50
- 3 Respostas
- 6882 Exibições
- Última mensagem por admin

Dom Mai 04, 2008 13:51
Sistemas de Equações
-
- Sistemas Lineares
por gustavowelp » Sáb Jun 26, 2010 17:05
- 3 Respostas
- 6570 Exibições
- Última mensagem por Douglasm

Dom Jun 27, 2010 09:09
Sistemas de Equações
-
- Sistemas lineares
por Catriane Moreira » Seg Set 06, 2010 18:32
- 1 Respostas
- 2378 Exibições
- Última mensagem por Molina

Seg Set 06, 2010 19:13
Sistemas de Equações
-
- sistemas lineares
por angeloka » Sáb Nov 27, 2010 17:59
- 1 Respostas
- 2508 Exibições
- Última mensagem por Neperiano

Sáb Nov 27, 2010 19:02
Sistemas de Equações
-
- sistemas lineares
por angeloka » Sáb Nov 27, 2010 22:10
- 0 Respostas
- 1727 Exibições
- Última mensagem por angeloka

Sáb Nov 27, 2010 22:10
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.