por Vidotti » Dom Nov 04, 2012 20:42
-
Vidotti
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Nov 04, 2012 20:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Dom Nov 04, 2012 20:47
Note que

, então

. Quando fizer os limites laterais, terá 1 e -1. Além disso, sua resolução das quatro últimas linhas está grosseiramente errada, pois você aplicou o limite e continuou escrevendo-o. Isto é passível de anulamento de nota, pois é erro conceitual.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Vidotti » Dom Nov 04, 2012 21:01
Como eu já disse, fiz apenas 2 aulas, gostaria de saber o por que de estar grosseiramente errado o que fiz nas ultimas linhas.
E a quanto os limites laterais, devo entender que sempre que tiver |x| / x , não existe?
-
Vidotti
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Nov 04, 2012 20:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Dom Nov 04, 2012 21:09
Porque sempre após aplicar o limite você deixa de escrevê-lo, por exemplo

, e não

.
Sim, o limite

não existe. Se tomarmos

, isto é, aproximando-se da origem pela direita, temos valores positivos para

, daí

e o limite será

. De forma semelhante, tomando

, teremos

e o limite será

.
Existe um teorema que diz que o limite existe se e somente se os limites laterais são iguais. Como são diferentes o limite não existe.
Editado pela última vez por
MarceloFantini em Seg Nov 05, 2012 10:26, em um total de 1 vez.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Vidotti » Dom Nov 04, 2012 21:17
certo, obrigado mesmo pela resposta, era isso mesmo que eu queria saber
-
Vidotti
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Nov 04, 2012 20:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dificuldade com limites e módulos
por Luisags » Qui Abr 12, 2012 23:05
- 5 Respostas
- 3628 Exibições
- Última mensagem por gabriel feron

Ter Abr 17, 2012 03:17
Cálculo: Limites, Derivadas e Integrais
-
- [limites] Dificuldade com raízes
por baloso » Sex Abr 25, 2014 19:22
- 2 Respostas
- 1893 Exibições
- Última mensagem por baloso

Seg Abr 28, 2014 19:33
Cálculo: Limites, Derivadas e Integrais
-
- [Dificuldade] com cálculo de porcentagem
por rkuguyama » Qui Set 18, 2014 13:36
- 1 Respostas
- 4677 Exibições
- Última mensagem por nakagumahissao

Sáb Set 20, 2014 01:03
Probabilidade
-
- ( calculo de volume),tentei fazer mas tenho dificuldade
por vinicastro » Sex Mai 30, 2014 22:54
- 1 Respostas
- 1867 Exibições
- Última mensagem por Russman

Sáb Mai 31, 2014 01:24
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo: Limites, Derivadas e Integrais] Cálculo de limites
por jeferson lopes » Ter Mar 26, 2013 08:49
- 2 Respostas
- 4798 Exibições
- Última mensagem por jeferson lopes

Ter Mar 26, 2013 11:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.