• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação vetorial da reta/plano

Equação vetorial da reta/plano

Mensagempor Danilo » Dom Nov 04, 2012 13:23

Sejam r e s retas reversas passando por A = (0,1,0) e B = (1,1,0) e por C = (-3,1,-4) e D = (-1,2,-7), respectivamente. Obtenha uma equação da reta concorrente com r e s e paralela ao vetor V = (1,-5,-1).


Bom, a primeira coisa que fiz foi encontrar as equações de r e s. Como a reta que concorre com r e s é paralela ao vetor (1,-5,-1) logo esse vetor é um dos vetores diretores da reta. Agora só falta eu encontrar um ponto... ponto esse que eu não sei como encontrar... grato a quem puder dar uma luz!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação vetorial da reta/plano

Mensagempor young_jedi » Dom Nov 04, 2012 14:13

voce deve ter econtrado o seguinte

\overrightarrow{AB}=(1,1,0)-(0,1,0)=1,0,0

sendo este o vetor diretor da reta r, então a equação parametrica de r fica

(x,y,z)=(1,0,0).t+(0,1,0)

para a reta s

\overrightarrow{CD}=(-1,2,-7)-(-3,1,-4)=2,1,-3

então a reta s pode ser descrita por

(x,y,z)=(2,1,-3).v+(-3,1,-4)

voce ja tem o vetor diretor da reta que voce quer encontrar portanto voce pode descreve-la como

(x,y,z)=(1,-5,-1)u+(a,b,c)

podemso assumir que (a,b,c) é um ponto da reta r onde as duas retas se interceptam então

(a,b,c)=(1,0,0).t+(0,1,0)

então

(x,y,z)=(1,-5,-1)u+(1,0,0).t+(0,1,0)

mais a reta tambem intercepta a reta s então

(2,1,-3).v+(-3,1,-4)=(1,-5,-1)u+(1,0,0).t+(0,1,0)

dai tiramos as equação

\begin{cases}2v-3=u+t\\v+1=-5u+1\\-3v-4=-u\end{cases}

resolvendo este sistema encontramos os valores de u, v, t e podemos determinar (a,b,c)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação vetorial da reta/plano

Mensagempor Danilo » Dom Nov 04, 2012 16:51

young_jedi escreveu:voce deve ter econtrado o seguinte

\overrightarrow{AB}=(1,1,0)-(0,1,0)=1,0,0

sendo este o vetor diretor da reta r, então a equação parametrica de r fica

(x,y,z)=(1,0,0).t+(0,1,0)

para a reta s

\overrightarrow{CD}=(-1,2,-7)-(-3,1,-4)=2,1,-3

então a reta s pode ser descrita por

(x,y,z)=(2,1,-3).v+(-3,1,-4)

voce ja tem o vetor diretor da reta que voce quer encontrar portanto voce pode descreve-la como

(x,y,z)=(1,-5,-1)u+(a,b,c)

podemso assumir que (a,b,c) é um ponto da reta r onde as duas retas se interceptam então

(a,b,c)=(1,0,0).t+(0,1,0)

então

(x,y,z)=(1,-5,-1)u+(1,0,0).t+(0,1,0)

mais a reta tambem intercepta a reta s então

(2,1,-3).v+(-3,1,-4)=(1,-5,-1)u+(1,0,0).t+(0,1,0)

dai tiramos as equação

\begin{cases}2v-3=u+t\\v+1=-5u+1\\-3v-4=-u\end{cases}

resolvendo este sistema encontramos os valores de u, v, t e podemos determinar (a,b,c)


Muito obrigado!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?