por Danilo » Dom Nov 04, 2012 13:23
Sejam r e s retas reversas passando por A = (0,1,0) e B = (1,1,0) e por C = (-3,1,-4) e D = (-1,2,-7), respectivamente. Obtenha uma equação da reta concorrente com r e s e paralela ao vetor V = (1,-5,-1).
Bom, a primeira coisa que fiz foi encontrar as equações de r e s. Como a reta que concorre com r e s é paralela ao vetor (1,-5,-1) logo esse vetor é um dos vetores diretores da reta. Agora só falta eu encontrar um ponto... ponto esse que eu não sei como encontrar... grato a quem puder dar uma luz!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Dom Nov 04, 2012 14:13
voce deve ter econtrado o seguinte

sendo este o vetor diretor da reta r, então a equação parametrica de r fica

para a reta s

então a reta s pode ser descrita por

voce ja tem o vetor diretor da reta que voce quer encontrar portanto voce pode descreve-la como

podemso assumir que (a,b,c) é um ponto da reta r onde as duas retas se interceptam então

então

mais a reta tambem intercepta a reta s então

dai tiramos as equação

resolvendo este sistema encontramos os valores de u, v, t e podemos determinar (a,b,c)
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Danilo » Dom Nov 04, 2012 16:51
young_jedi escreveu:voce deve ter econtrado o seguinte

sendo este o vetor diretor da reta r, então a equação parametrica de r fica

para a reta s

então a reta s pode ser descrita por

voce ja tem o vetor diretor da reta que voce quer encontrar portanto voce pode descreve-la como

podemso assumir que (a,b,c) é um ponto da reta r onde as duas retas se interceptam então

então

mais a reta tambem intercepta a reta s então

dai tiramos as equação

resolvendo este sistema encontramos os valores de u, v, t e podemos determinar (a,b,c)
Muito obrigado!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação vetorial da reta/plano
por Danilo » Ter Nov 06, 2012 14:58
- 5 Respostas
- 5688 Exibições
- Última mensagem por Danilo

Ter Nov 06, 2012 20:09
Geometria Analítica
-
- [Equação da Reta] Reta que passa por pontos do plano.
por acorreia » Qua Mai 02, 2012 17:31
- 1 Respostas
- 2460 Exibições
- Última mensagem por Russman

Qua Mai 02, 2012 21:25
Geometria Analítica
-
- AJUDA EQUAÇÃO VETORIAL/PARAMÉTRICA NO PLANO
por Raquel Botura » Sex Nov 09, 2018 11:19
- 1 Respostas
- 8380 Exibições
- Última mensagem por Gebe

Sex Nov 09, 2018 17:13
Geometria Analítica
-
- Equação vetorial da reta
por Danilo » Qua Out 31, 2012 02:36
- 3 Respostas
- 2323 Exibições
- Última mensagem por MarceloFantini

Sex Nov 02, 2012 08:23
Geometria Analítica
-
- Encontrar equação (vetorial) da reta
por elisafrombrazil » Qua Abr 19, 2017 21:52
- 0 Respostas
- 1820 Exibições
- Última mensagem por elisafrombrazil

Qua Abr 19, 2017 21:52
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.