• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quantidade de números ímpares dentro de um intervalo

Quantidade de números ímpares dentro de um intervalo

Mensagempor Yasmin Cristina » Qui Nov 01, 2012 00:29

Olá,
gostaria de uma ajuda nesse exercício..

Quantos números ímpares compreendidos entre 2000 e 7000 podemos formar com os algarismos 2, 3, 4, 6, 8 e 9, de modo que não figurem algarismos repetidos?


obs. não há alternativas, e a resposta é 84.

Cheguei às seguintes conclusões:

--> Os números possíveis são formados por quatro algarismos, uma vez que estão entre 2000 e 7000.
--> Para o último algarismo (da esquerda para a direita) só há duas possibilidades, pois o número deve ser ímpar e entre os algarismos fornecidos, somente o "3" e o "9" satisfazem a condição.
-->Para o primeiro algarismotrês possibilidades, foram descartados o "8" e o "9", pois ultrapassam o intervalo dado e o algarismo "3", para não haver repetição.

Bom, a partir daí de todas as formas que tentei calcular, não bateu com o resultado...
=/
Yasmin Cristina
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Out 31, 2012 23:09
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Quantidade de números ímpares dentro de um intervalo

Mensagempor Cleyson007 » Qui Nov 01, 2012 10:11

Bom dia Yasmin!

Quando o 3 ocupar a primeira posição ele não poderá ficar na última, ou seja, deve-se separar em TRÊS partes a conta --> A com 3 na frente , e sem o 3 na frente (subdividida em duas)

Com 3 na frente, temos:

1 . 4 . 3 . 1 => 12 possibilidades.

Apenas o 9 pode ocupar a última e caracterizar um número ímpar, logo sobra-se 4 e depois 3 opções (para não haver repetição que também é pedido) entre os algarismos.

Sem o 3 na frente mas com ele na ultima posição:

3 . 4 . 3 . 1 => 36 possibilidades.

Sem o 3 na frente mas com o 9 na ultima posição:

3 . 4 . 3 . 1 => 36 possibilidades.

36 + 36 + 12 => 84 possibilidades.

Bons estudos :y:

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Quantidade de números ímpares dentro de um intervalo

Mensagempor Yasmin Cristina » Qui Nov 01, 2012 12:50

Muito obrigada!!

Agora entendi...

^^
Yasmin Cristina
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Out 31, 2012 23:09
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Quantidade de números ímpares dentro de um intervalo

Mensagempor Cleyson007 » Qui Nov 01, 2012 19:00

Que bom que entendeu Yasmin..

Bons estudos :y:

Atenciosamente,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59