Olá,
gostaria de uma ajuda nesse exercício..
Quantos números ímpares compreendidos entre 2000 e 7000 podemos formar com os algarismos 2, 3, 4, 6, 8 e 9, de modo que não figurem algarismos repetidos?
obs. não há alternativas, e a resposta é 84.
Cheguei às seguintes conclusões:
--> Os números possíveis são formados por quatro algarismos, uma vez que estão entre 2000 e 7000.
--> Para o último algarismo (da esquerda para a direita) só há duas possibilidades, pois o número deve ser ímpar e entre os algarismos fornecidos, somente o "3" e o "9" satisfazem a condição.
-->Para o primeiro algarismo há três possibilidades, foram descartados o "8" e o "9", pois ultrapassam o intervalo dado e o algarismo "3", para não haver repetição.
Bom, a partir daí de todas as formas que tentei calcular, não bateu com o resultado...
=/



![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)