• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação vetorial da reta

Equação vetorial da reta

Mensagempor Danilo » Qua Out 31, 2012 02:36

Dados os planos \alpha1: x-y+z+1 = 0 e \alpha2 : x+y-z-1=0, determine o plano que contém \alpha1
interseção com \alpha2 e é ortogonal ao vetor (1,1,-1).

Bom, sei que a interseção entre dois planos é uma reta... e como encontrar equação de planos e retas mas não sei como aplicar no exercício. Grato desde já!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação vetorial da reta

Mensagempor MarceloFantini » Qua Out 31, 2012 07:12

Encontre a reta que é interseção de \alpha_1 com \alpha_2. Uma forma de fazer é encontrar um vetor (a,b,c) tal que o produto vetorial dele com o vetor diretor da reta seja (1,1,-1).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação vetorial da reta

Mensagempor Danilo » Sex Nov 02, 2012 02:38

MarceloFantini escreveu:Encontre a reta que é interseção de \alpha_1 com \alpha_2. Uma forma de fazer é encontrar um vetor (a,b,c) tal que o produto vetorial dele com o vetor diretor da reta seja (1,1,-1).


Bom, a primeira coisa que fiz foi fazer o produto vetorial das normais dos planos dados. Para mim, a normal encontrada será o vetor diretor da reta que quero encontrar (corrijam-me se eu estiver errado.). Aí depois eu encontrei o ponto (0,1,0) que é a solução do sistema dos planos dados... e encontrei uma equação (que nao corresponde a resposta correta...). Onde estou errando?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação vetorial da reta

Mensagempor MarceloFantini » Sex Nov 02, 2012 08:23

Danilo escreveu:Bom, a primeira coisa que fiz foi fazer o produto vetorial das normais dos planos dados. Para mim, a normal encontrada será o vetor diretor da reta que quero encontrar (corrijam-me se eu estiver errado.). Aí depois eu encontrei o ponto (0,1,0) que é a solução do sistema dos planos dados... e encontrei uma equação (que nao corresponde a resposta correta...). Onde estou errando?

O produto vetorial realmente é o vetor diretor da reta que você quer encontrar, mas você quer encontrar um plano. A outra condição que este plano deve satisfazer é ser ortogonal a (1,1,-1), logo tome um vetor que seja ortogonal a ele, como (-1,0,1).

Todas as condições foram satisfeitas agora. A equação será r: (0,1,0) + t(a_1,a_2,a_3) + r(-1,0,1), onde (a_1,a_2,a_3) é o vetor que você encontrou no produto vetorial.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)