• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada de Função Exponencial] Problema de Economia

[Derivada de Função Exponencial] Problema de Economia

Mensagempor Ronaldobb » Seg Out 29, 2012 09:38

A demanda por uma nova linha de computadores, t meses após seu lançamento no mercado, é estimada por:

D(t)=2000-1500{e}^{-0.05t}

(t>0)

a) A que nível se espera que a demanda se estabilize?
b) Encontre a taxa da demanda após o décimo mês.
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivada de Função Exponencial] Problema de Economia

Mensagempor e8group » Seg Out 29, 2012 11:54

Bom dia , na letra A , não utilizei derivadas , apenas utilizei limites .

Solução :


Vamos reescrever sua função como ,


D(t) = 2000 - \frac{1500}{e^{0.05t}} .


Calculando o limite quando t \to +\infty ,


\lim_{t\to +\infty} D(t) =  2000 .

Perceba que ,

\frac{1500}{e^{0.05t}} é sempre positiva , o que significa que a demanda se estabilize quando D(t) estar em uma "vizinhaça " do 2000 , à esquerda . Sendo assim , a melhor aproximação do 2000 será quando ,

e^{0.05t} > 1500 pois \frac{1500}{e^{0.05t}} \in (0 ,1 )  \iff  e^{0.05t} > 1500 .


Ou seja , quando e^{0.05t} > 1500 \implies  ln( e^{0.05t}) > ln(1500) \implies t > \frac{ln(1500)}{0.005} \approx146 ,3


Isso que dizer que , a demanda vai estabilizar quando t > 146 .


Calculando o limite quando t tende a 146 , veja :


http://www.wolframalpha.com/input/?i=li ... s+t+to+146


A media q t vai aumentando , a função fica mais próximo do 2000 ,D < 2000 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}