• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor mayconf » Sex Out 26, 2012 16:06

y=tg\sqrt[3]{5-6x}

Sendo: (tg u)\prime = sec{}^{2} u.u\prime

minha professora resolveu assim:

y= tg\sqrt[3]{5-6x}=\left(tg\left(5-6x \right){}^{\frac{1}{2}} \right){}^{3}

y\prime=3\left(tg\left(5-6x \right){}^{\frac{1}{2}} \right){}^{2}.\left(sec{}^{2}\left(5-6x \right){}^{\frac{1}{2}}.\frac{1}{2}\left(5-6x \right){}^{\frac{-1}{2}}\left(-6 \right)\right)

eu num intendi quele menus 6 no fim ali
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor MarceloFantini » Sáb Out 27, 2012 08:24

Está errado. Note que \sqrt[3]{5-6x} = (5-6x)^{\frac{1}{3}}, que é diferente de (5-6x)^{\frac{3}{2}} = ((5-6x)^{\frac{1}{2}})^3.

Note que você tem a composição de três funções: f(x) = \tan (x), h(x) = \sqrt[3]{x} e g(x) = 5-6x. A composição é f(h(g(x))), e derivando teremos f'(h(g(x)) \cdot h'(g(x)) \cdot g'(x) pela regra da cadeia. Portanto,

(\tan (\sqrt[3]{5-6x}))' = \sec^2 (\sqrt[3]{5-6x}) \cdot \frac{1}{3} \frac{1}{\sqrt[3]{(5-6x)^2}} \cdot (5-6x)'

= \sec^2 (\sqrt[3]{5-6x}) \cdot \frac{1}{3} \frac{1}{\sqrt[3]{(5-6x)^2}} \cdot (-6).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?