por Danilo » Sex Out 26, 2012 01:15
Dadas as retas
r:

e s: x-2 = y = z, obtenha uma equação geral para o plano determinado por r e s.
Bom, sei como encontrar a equação do plano obtendo a normal e um de seus pontos mas eu não vejo como fazer isso tendo duas retas. E não vejo como duas retas determinam um plano... Grato desde já!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Sex Out 26, 2012 02:37
Seja

o parâmetro da primeira reta e

da segunda.
Então

e

.
Daí,

e

Na notação usual, a reta

será dada por

e a reta

por

.
Para obter a equação geral, faça como no
outro tópico: calcule o produto vetorial dos vetores diretores, ou seja, calcule

e substitua

para encontrar o coeficiente que falta.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Danilo » Sex Out 26, 2012 10:31
MarceloFantini escreveu:Seja

o parâmetro da primeira reta e

da segunda.
Então

e

.
Daí,

e

Na notação usual, a reta

será dada por

e a reta

por

.
Para obter a equação geral, faça como no
outro tópico: calcule o produto vetorial dos vetores diretores, ou seja, calcule

e substitua

para encontrar o coeficiente que falta.
Mais uma vez, obrigado Marcelo! Entendi!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações de plano] encontrar a equação de um plano
por GHT1810 » Ter Jul 03, 2018 19:42
- 0 Respostas
- 5155 Exibições
- Última mensagem por GHT1810

Ter Jul 03, 2018 19:42
Geometria Analítica
-
- [Equação do Plano Tangente - Plano Paralalelo]
por raimundoocjr » Qui Out 24, 2013 22:10
- 0 Respostas
- 2538 Exibições
- Última mensagem por raimundoocjr

Qui Out 24, 2013 22:10
Cálculo: Limites, Derivadas e Integrais
-
- Equação do plano
por manuoliveira » Qua Mai 23, 2012 17:59
- 1 Respostas
- 1815 Exibições
- Última mensagem por LuizAquino

Qua Mai 23, 2012 20:48
Geometria Analítica
-
- Equação do plano
por Danilo » Qui Out 25, 2012 22:38
- 7 Respostas
- 6825 Exibições
- Última mensagem por MarceloFantini

Qua Out 31, 2012 06:51
Geometria Analítica
-
- [equação do plano]
por lucasdemirand » Dom Set 01, 2013 11:33
- 0 Respostas
- 803 Exibições
- Última mensagem por lucasdemirand

Dom Set 01, 2013 11:33
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.