• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Usando tecnicas de integrais por substituiçao simples]

[Usando tecnicas de integrais por substituiçao simples]

Mensagempor menino de ouro » Qua Out 24, 2012 23:10

gostaria de aprender a substituir( u.du) nessa questao:

obs: o (e) que multiplica a raiz do lado de fora está elevando o( x ) e o ,(e ) dentro da raiz esta elevando o (-2x)

\int \frac{1}{e^x  \sqrt[]{1-e^-2x}}    dx




usando uma dessas formulas dadas:


\int     \frac{1}{\sqrt[]{a^2 -x^2}}dx =arcsen \frac{x}{a} +c,\left|x \right|<a


\int     \frac{1}{x \sqrt[]{x^2 -a^2}}dx =\frac{1}{a}arcsec \left|\frac{x}{a} \right| +c,\left|x \right|>a


\int     \frac{1}{a^2 + x^2}dx = \frac{1}{a} arctg\frac{x}{a}+c
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: [Usando tecnicas de integrais por substituiçao simples]

Mensagempor MarceloFantini » Qui Out 25, 2012 01:27

Note que

\int \frac{1}{e^x \sqrt{1 - e^{-2x}}} \, dx = \int \frac{e^{-x}}{\sqrt{1-e^{-2x}}} \, dx,

e agora faça u = e^{-x}, daí du = - e^{-x} \, dx e e^{-2x} = (e^{-x})^2 = u^2.

Portanto,

\int \frac{e^{-x}}{\sqrt{1-e^{-2x}}} \, dx = \int \frac{-1}{\sqrt{1-u^2}} \, du.

Agora é só olhar qual é parecida.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.