• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Tecnicas de integraçao por substiuiçao simples]

[Tecnicas de integraçao por substiuiçao simples]

Mensagempor menino de ouro » Qua Out 24, 2012 16:12

por favor me ajude a resolver e entender essa questão de integral por substituição simples:
a)\int \frac{1}{1+4x^2}dx


usando uma dessas formulas:

\int     \frac{1}{\sqrt[]{a^2 -x^2}}dx =arcsen \frac{x}{a} +c,\left|x \right|<a

\int     \frac{1}{x \sqrt[]{x^2 -a^2}}dx =\frac{1}{a}arcsec \left|\frac{x}{a} \right| +c,\left|x \right|>a

\int     \frac{1}{a^2 + x^2}dx = \frac{1}{a} arctg\frac{x}{a}+c

eu estou começando a aprender a substituição de uma variável (x) por u.du ( du = a derivada de u)
ou seja escolhendo um termo da fraçao que contenha (x )no denominador ou no numerador.
estou com bastante dificuldade pois meu curso é a distancia (EAD) e ?o tem o professor ,não tem tutor!pois são poucos alunos e a maioria já passou nesta disciplina(calculo 2) ou desistiu do curso
obrigado!
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: [Tecnicas de integraçao por substiuiçao simples]

Mensagempor young_jedi » Qua Out 24, 2012 16:51

para essa integral faça seguinte substituição

2x=u

2dx=du

dx=\frac{du}{2}

substituindo na sua integral ficaria

\int\frac{1}{1+u^2}\frac{du}{2}

\frac{1}{2}\int\frac{1}{1+u^2}du

das tres relações que voce passou,a terceira é a que se encaixa nesta integral, utilize ela para resolver e qualquer coisa pergunte
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)