• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indeterminações envolvendo infinito.

Indeterminações envolvendo infinito.

Mensagempor Sobreira » Ter Out 23, 2012 01:05

Pessoal,
Gostaria de saber se há mais indeterminações com o infinito (além destas abaixo)
E quais são??

\infty-\infty


\frac{\infty}{\infty}


\infty*0
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Indeterminações envolvendo infinito.

Mensagempor Fabio Wanderley » Ter Out 23, 2012 08:46

Bom dia,

Vou postar as indeterminações que estão no livro do Guidorizzi (p. 105, vol. 1, 5 ed)

+\infty-(+\infty)

-\infty-(-\infty)

0 \cdot \infty

\frac{\infty}{\infty}

\frac{0}{0}

1^\infty

0^0

\infty^0

Postei indeterminações envolvendo o zero e repeti algumas que vc já havia postado, mas de outra forma.

Até mais.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Indeterminações envolvendo infinito.

Mensagempor Sobreira » Ter Out 23, 2012 11:19

Obrigado.
Agora, alguém sabe me informar, matematicamente, porque \infty * 0 não é igual a 0???
Sei que \infty não é um número real mas pensando como um número real com módulo muito grande, não entendo porque é uma indeterminação.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Indeterminações envolvendo infinito.

Mensagempor MarceloFantini » Ter Out 23, 2012 12:00

É que você não pode pensar em \infty como um número real com módulo muito grande. Todas essas expressões não tem significado até que você decida o que entender por elas. Normalmente você irá defini-las de acordo com o contexto e o que for mais conveniente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.