por Fabio Wanderley » Seg Out 22, 2012 23:37
Olá,
segue a questão:
Seja f uma função par e contínua em [-r, r], r > 0. (Lembre-se: f par <--> f(- x) = f(x).)
Mostre que
Resolução:u = - x
du = - dx



Como f é uma função par:

Mas,

, logo:

------------
Alguém pode conferir se está certo, ou opinar sobre algo ou mesmo corrigir algum erro?
Tópico para referência:
viewtopic.php?f=120&t=9975
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por MarceloFantini » Ter Out 23, 2012 00:25
Está correto, o raciocínio é análogo como no outro tópico.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Fabio Wanderley » Ter Out 23, 2012 00:45
MarceloFantini escreveu:Está correto, o raciocínio é análogo como no outro tópico.
Obrigado!
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Está certa minha resolução???
por Valmel » Qui Dez 06, 2012 00:48
- 1 Respostas
- 1703 Exibições
- Última mensagem por Valmel

Qui Dez 06, 2012 00:51
Aritmética
-
- [Função 2º grau] Minha resposta está certa?
por Richard Oliveira » Sex Mai 04, 2012 03:05
- 1 Respostas
- 1589 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 05, 2012 00:06
Funções
-
- Esta minha resolucao está correta?
por SsEstevesS » Dom Nov 27, 2011 10:29
- 0 Respostas
- 2618 Exibições
- Última mensagem por SsEstevesS

Dom Nov 27, 2011 10:29
Geometria Plana
-
- Integral definida - Resolução
por vmouc » Qui Set 01, 2011 18:03
- 4 Respostas
- 2623 Exibições
- Última mensagem por LuizAquino

Qui Set 01, 2011 18:54
Cálculo: Limites, Derivadas e Integrais
-
- [Resolução de Integral Definida]
por Seza Saenz » Qui Mar 24, 2016 15:18
- 0 Respostas
- 1917 Exibições
- Última mensagem por Seza Saenz

Qui Mar 24, 2016 15:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.