• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Definida] Está certa minha resolução?

[Integral Definida] Está certa minha resolução?

Mensagempor Fabio Wanderley » Seg Out 22, 2012 23:37

Olá,

segue a questão:

Seja f uma função par e contínua em [-r, r], r > 0. (Lembre-se: f par <--> f(- x) = f(x).)
Mostre que \int_{-r}^{0}f(x) \ dx= \int_{0}^{r}f(x) \ dx

Resolução:

u = - x
du = - dx

x=-r \rightarrow u=r
x=0 \rightarrow u=0

\int_{-r}^{0}f(x) \ dx = -\int_{-r}^{0}f(x) \ (-dx)= -\int_{r}^{0}f(-u) \ du = \int_{0}^{r}f(-u) \ du

Como f é uma função par:

\int_{0}^{r}f(-u) \ du = \int_{0}^{r}f(u) \ du

Mas, \int_{0}^{r}f(u) \ du= \int_{0}^{r}f(x) \ dx, logo:

\int_{-r}^{0}f(x) \ dx = \int_{0}^{r}f(x) \ dx

------------

Alguém pode conferir se está certo, ou opinar sobre algo ou mesmo corrigir algum erro?

Tópico para referência: viewtopic.php?f=120&t=9975
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Integral Definida] Está certa minha resolução?

Mensagempor MarceloFantini » Ter Out 23, 2012 00:25

Está correto, o raciocínio é análogo como no outro tópico.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integral Definida] Está certa minha resolução?

Mensagempor Fabio Wanderley » Ter Out 23, 2012 00:45

MarceloFantini escreveu:Está correto, o raciocínio é análogo como no outro tópico.


Obrigado!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: