• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de equações

Sistemas de equações

Mensagempor Danilo Dias Vilela » Qui Set 10, 2009 14:53

Gostaria que me ajudassem na seguinte questão: 1) O sistema ax-2y=1, bx+4y=5 tem solução determinada, somente se:

a) a=\frac{b}{2}
b) 2a\neq -b
c) 2a\neq b
d)a= -2b (menos dois b)
e)a=b

Tenho tentado dar valores para a e para b, mas não tô conseguindo. Se alguém puder me ajudar. Já me responderam este tópico, mas por determinante. Gostaria de saber se não há outro modo melhor de fazer este exercício, pois ainda não vi determinantes. Molina se você ver de novo e puder me explicar uma outra forma de fazer ficaria muito grato.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Sistemas de equações

Mensagempor Elcioschin » Qui Set 10, 2009 15:20

ax - 2y = 1 ----> Multiplicando por 2 ----> 2ax - 2y = 2 ----> Equação I

bx + 4y = 5 ----> Equação II

Somando I e II -----> 2ax + bx = 2 + 5 -----> (2a + b)*x = 7 ----> x = 7/(2a + b)

Para existir x, o denominador do 2° membro NÃO pode ser nulo ----> 2a + b <> 0 ----> 2a <> - b ----> B

Obs.: o sinal <> significa "diferente".
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.