por Lucio » Sáb Out 20, 2012 09:52
Olá colegas
Os valores de m e k para que as equações do sistema

representem uma única reta são, respectivamente:
a) ?(2/9) e ?(2/3).
b) ?(2/3) e 2/3.
c) ?(3/2) e ?(2/3).
d) (2/9) e (2/9).
1º - Tentei resolver por tentativa, mas foi muito trabalhoso e não cheguei ao resultado
2º - Coloquei esses valores no geogebra, só dá erro, isso é função inválida.
Desde já agradeço a ajuda de todos
Obrigado
-
Lucio
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Dez 21, 2011 07:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por e8group » Sáb Out 20, 2012 12:08
Pense assim , através das três equações temos um ponto(A) de coordenada x e y pertecente a reta (r) .

. Isolando o "y" em cada equação , por exemplo . Você tem o ponto A em função de x , m e k para todo x real . Para x = 0 por exemplo ,podemos estabelecer uma igualdade que implicará uma condição para m e k que satisfaça as três equações .
OBS .: Este sistema pode ser escrito em látex através do seguinte comando : \begin{cases} ; \end{cases} ao invés de begin{pmatrix} \end{pmatrix} .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Lucio » Seg Out 22, 2012 00:26
Isolando o y e atribuindo zero para o x:



Santhiago obrigado por de ajudar, mas infelizmente não consegui estabelecer uma igualdade que implica uma condição para m e k que satisfaça as três equações.
Poderia por favor me orientar mais um vez?
Obrigado
-
Lucio
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Dez 21, 2011 07:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por e8group » Seg Out 22, 2012 12:07
Luicio , pensei assim :
Primeiro queremos uma condição em relação a
k e
m tal que as equações representam uma mesma reta . Como sabemos ,a equação da reta tem o formato

. Onde
a é o coeficiente ângular da reta e
b uma cosntante . Sendo assim , as três equações representaram uma reta quandos terem a mesma configuração .
Isolando
y em cada equação , temos que :

.
Agora comparando os termos da igualdade , e igualando-os .

. Daí, podemos estabelcer que ,

.
logo ,

.
Resolvendo , encontrará :

.
Comente qualquer coisa .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Lucio » Ter Out 23, 2012 06:52
Mais uma vez muito obrigado Santhiago.
Realmente eu preciso estudar mais esse assunto.
Sozinho não conseguiria chegar a resposta.
Um abraço...
-
Lucio
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Dez 21, 2011 07:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4349 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- Sistema de equações
por Cleyson007 » Sex Set 12, 2008 12:47
- 6 Respostas
- 5349 Exibições
- Última mensagem por Cleyson007

Qua Jun 03, 2009 17:25
Sistemas de Equações
-
- Sistema de Equações
por Cleyson007 » Qua Mai 27, 2009 14:01
- 3 Respostas
- 3233 Exibições
- Última mensagem por Cleyson007

Qui Mai 28, 2009 17:51
Sistemas de Equações
-
- Sistema de equações
por Moreno1986 » Seg Mai 17, 2010 15:04
- 3 Respostas
- 3462 Exibições
- Última mensagem por Neperiano

Ter Mai 18, 2010 17:54
Sistemas de Equações
-
- Sistema de equações
por Moreno1986 » Sex Abr 23, 2010 13:54
- 1 Respostas
- 1479 Exibições
- Última mensagem por MarceloFantini

Sáb Abr 24, 2010 00:56
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.