por barbara-rabello » Qui Out 18, 2012 12:22

Consegui calcular a derivada primeira em x:

E a derivada primeira em y:

Tenho as respostas das derivadas segundas, mas n´~ao estou conseguindo calculá-las, pois são expressões longas
com vários produtos, não consegui derivar tudo!!
Alguém pode me ajudar?
Derivada segunda em x:

derivada segunda em y:

-
barbara-rabello
- Usuário Dedicado

-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por barbara-rabello » Qui Out 18, 2012 12:23
Na questão é e^(-2xy), não consegui ajeitar no editor, desculpem!
-
barbara-rabello
- Usuário Dedicado

-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por young_jedi » Qui Out 18, 2012 16:32
partindo da derivada primeira que voce ja calculou

fazendo as multiplicações

resolvendo as somas

tente fazer para a derivada segunda de y
Dicas: na hora de fazer exponecial o expoente tem que ficar entre chaves e^{-2xy}
e na derivada parcial voce deve ter feito no denominador \partialx, mas tem que ter um espaço entre o x
\partial x ou \partial y
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por e8group » Qui Out 18, 2012 18:20
Como,
![\frac{\partial }{\partial y}f(x,y) = -2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ] . \frac{\partial }{\partial y}f(x,y) = -2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ] .](/latexrender/pictures/a9315b845a009924bf83f392af36d003.png)
Assim ,
![\frac{\partial^2 }{\partial y^2}f(x,y) = \frac{\partial }{\partial y}\left(-2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ]\right) \frac{\partial^2 }{\partial y^2}f(x,y) = \frac{\partial }{\partial y}\left(-2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ]\right)](/latexrender/pictures/62dd5124a8541e81dd372396759baa33.png)
.
Agora seja ,

.
![\frac{\partial^2 }{\partial y^2}f(x,y) = -2 \frac{\partial }{\partial y}\left(e^{-2xy}\cdot z(x,y) \right) = -2 \left( z(x,y)\left[\frac{\partial }{\partial y}e^{-2xy} \right ] +e^{-2xy}\left[\frac{\partial }{\partial y}z(x,y) \right ]\right ) \frac{\partial^2 }{\partial y^2}f(x,y) = -2 \frac{\partial }{\partial y}\left(e^{-2xy}\cdot z(x,y) \right) = -2 \left( z(x,y)\left[\frac{\partial }{\partial y}e^{-2xy} \right ] +e^{-2xy}\left[\frac{\partial }{\partial y}z(x,y) \right ]\right )](/latexrender/pictures/11fc44a260833d7ded4ff8f504e74781.png)
.
Derivando por partes ,

e

Fazendo as substituições , obteremos que :
OBS.: Recomendo este site :
http://www.codecogs.com/latex/eqneditor.php?lang=pt-br para visualizar o latex antes de postar aqui .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- segunda derivada
por jmario » Sex Mai 07, 2010 22:25
- 2 Respostas
- 2708 Exibições
- Última mensagem por Molina

Sáb Mai 08, 2010 14:00
Cálculo: Limites, Derivadas e Integrais
-
- [derivada segunda]
por nayra suelen » Qua Mai 30, 2012 13:38
- 2 Respostas
- 1638 Exibições
- Última mensagem por nayra suelen

Qua Mai 30, 2012 14:42
Cálculo: Limites, Derivadas e Integrais
-
- Derivada da primeira e derivada da segunda
por Laisa » Ter Fev 26, 2019 17:02
- 1 Respostas
- 5685 Exibições
- Última mensagem por DanielFerreira

Qui Set 05, 2019 23:28
Cálculo: Limites, Derivadas e Integrais
-
- Derivada primeira e segunda
por luiz3107 » Ter Ago 17, 2010 16:39
- 2 Respostas
- 2927 Exibições
- Última mensagem por luiz3107

Ter Ago 17, 2010 17:54
Cálculo: Limites, Derivadas e Integrais
-
- derivada de segunda ordem
por lgbmp » Sex Set 03, 2010 19:25
- 2 Respostas
- 3029 Exibições
- Última mensagem por lgbmp

Seg Set 06, 2010 13:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 12:41
pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.
78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?
Assunto:
dúvida em uma questão em regra de 3!
Autor:
Douglasm - Qui Jul 01, 2010 13:16
Observe o raciocínio:
10 pessoas - 9 dias - 135 toneladas
1 pessoa - 9 dias - 13,5 toneladas
1 pessoa - 1 dia - 1,5 toneladas
40 pessoas - 1 dia - 60 toneladas
40 pessoas - 30 dias - 1800 toneladas
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:18
pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:21
leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
valeu meu camarada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.