• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral, como resolver??

Integral, como resolver??

Mensagempor manuoliveira » Qua Out 17, 2012 21:40

Estou estudando integrais por frações parciais mas travei na seguinte:

\int_{}^{}\frac{(5x + 4)}{(x^2 + 3x + 1)} dx

Tenho prova semana que vem então agradeço mesmo quem puder ajudar!! Obrigada desde já
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Integral, como resolver??

Mensagempor MarceloFantini » Qua Out 17, 2012 22:43

Segundo o Wolfram Alpha, a expansão em frações parciais será

\frac{5x+4}{x^2 +3x +1} = \frac{7 + 5 \sqrt{5}}{\sqrt{5} (2x + \sqrt{5} + 3)} + \frac{7 - 5 \sqrt{5}}{\sqrt{5} (-2x + \sqrt{5} - 3)}.

Agora basta integrar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral, como resolver??

Mensagempor e8group » Qui Out 18, 2012 11:10

Visto que ,


\frac{5x+4}{x^2 +3x +1}  = \frac{7 +5\sqrt{5}}{\sqrt{5}(2x+\sqrt{5}+3)} +\frac{7-5\sqrt{5}}{\sqrt{5}(-2x+\sqrt{5}-3)}  = \frac{1}{5}\left(\frac{7\sqrt{5} +25}{2x+\sqrt{5}+3} +\frac{7\sqrt{5} -25}{-2x+\sqrt{5}-3)}\right) .


Temos que ,



\int \frac{5x+4}{x^2 +3x +1} dx  = \int \frac{1}{5}\left(\frac{7\sqrt{5} +25}{2x+\sqrt{5}+3} +\frac{7\sqrt{5} -25}{-2x+\sqrt{5}-3)}\right) dx .


Escrevendo esta integral indefinida (antiderivada) como ,


\frac{1}{5}\left( (7\sqrt{5}+25)\int\frac{dx}{2x+\sqrt{5}+3}+(7\sqrt{5}-25)\int\frac{dx}{-2x+\sqrt{5}-3}\right )  .


Integrando cada termo ,obtemos que :

\int \frac{5x+4}{x^2 +3x +1} dx  =  \\ \\ \frac{1}{5} \left((7\sqrt{5}+25)2^{-1}ln(2x+\sqrt{5}+3) +(7\sqrt{5}-25)2^{-1}ln(-2x+\sqrt{5}-3) \right)  + C   =  \\ \\   \frac{(7\sqrt{5}+25)ln(2x+\sqrt{5}+3) +(-7\sqrt{5}+25)ln(-2x+\sqrt{5}-3)}{10} + C




OBS.: Se eu errei alguma "passagem " (ainda não vi este conteúdo ,resolvir por curiosidade),post aí por favor .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.