por Mayra Luna » Qua Out 17, 2012 19:46
Na figura, a circunferência de centro C e raio 4cm é tangente à reta r no ponto P. Se PB = 4cm, a área da região sombreada é

- df.png (6.4 KiB) Exibido 1542 vezes
A)

B)

C)

D)

E)

Achei a hipotenusa CB por pitágoras



mas não sei achar a área sombreada.
A resposta é letra C.
-
Mayra Luna
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Out 07, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por young_jedi » Qua Out 17, 2012 19:52
voce tem que achar o angulo C
como voce sabe que os dois lados do triangulo medem 4cm então é um triangulo retangulo isoceles portanto os angulos C e B medem 45º.
ai voce calcula a area do circulo e por regras de tres voce determina a area sobreada
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Mayra Luna » Qua Out 17, 2012 20:09
Consegui resolver, muito obrigada!!

-
Mayra Luna
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Out 07, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- circulo e triangulo
por heldersmd » Sáb Set 15, 2012 17:06
- 1 Respostas
- 1160 Exibições
- Última mensagem por young_jedi

Sáb Set 15, 2012 21:07
Geometria Plana
-
- Triangulo circunscrito no circulo
por leandrynhucarioca » Seg Ago 15, 2011 23:55
- 0 Respostas
- 1099 Exibições
- Última mensagem por leandrynhucarioca

Seg Ago 15, 2011 23:55
Geometria Plana
-
- Círculo trigonométrico
por Ananda » Sex Fev 29, 2008 10:56
- 8 Respostas
- 7527 Exibições
- Última mensagem por Ananda

Seg Mar 03, 2008 17:51
Trigonometria
-
- Círculo trigonométrico
por Ananda » Qui Mar 06, 2008 23:00
- 1 Respostas
- 3702 Exibições
- Última mensagem por Neperiano

Dom Set 04, 2011 22:07
Geometria
-
- Círculo Trigonométrico
por caiolasagno » Seg Abr 13, 2009 21:18
- 1 Respostas
- 2312 Exibições
- Última mensagem por Marcampucio

Seg Abr 13, 2009 21:29
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.