• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada - Taxa de variação - velocidade

Derivada - Taxa de variação - velocidade

Mensagempor emanes » Qua Out 17, 2012 11:10

Bom dia,

Alguém poderia me ajudar no exercício abaixo, pois estou estudando derivada agora e não estou entendendo o cálculo da taxa de variação:

Um carro A esta indo rumo a oeste a 50km/h e o carro B esta indo rumo norte a 60km/h. Ambos estão se dirigindo para uma encruzilhada das duas retas. A que velocidade os carros estão se aproximando um do outro quando o carro A está a 300m e o carro B está a 400m da encruzilhada?
emanes
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Ago 17, 2012 09:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabil
Andamento: cursando

Re: Derivada - Taxa de variação - velocidade

Mensagempor young_jedi » Qua Out 17, 2012 11:50

Podemos notar que um deles faz uma trajetoria vertical e o outro horizontal

vamos dizer que a distancia de A ate a encruzilhada é x e a de B é y
com isso temos que a distancia entre os dois é

s=\sqrt{x^2+y^2}

em função do tempo

s(t)=\sqrt{x(t)^2+y(t)^2}

então a velocidade que eles se aproximam é

v=\frac{ds}{dt}

derivando a equação de s então

v=\frac{1}{2}\frac{1}{\sqrt{x(t)^2+y(t)^2}}.\left(2.x(t).\frac{dx}{dt}+2.y(t).\frac{dy}{dt}\right)

mais voce sabe que \frac{dx}{dt} e \frac{dy}{dt}, são as velocidades de A e B então substituindo as velocidades e as distancias de A e B chega-se a velocidade e aproximação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.