• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Séries

Dúvida Séries

Mensagempor Aprendiz2012 » Seg Out 15, 2012 00:03

Aplicando os teoremas e corolários, verificar se a série é conveg. ou diverg. Se Possível encontre Sn

\sum_{n=1}^{\infty}ln.n

fiz:

{a}_{1}=0
{a}_{2}=0,693..
{a}_{3}=1,0986...

concluindo que a série é divergente

mas acredito que esteja errado..
Aprendiz2012
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sáb Ago 11, 2012 18:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em química
Andamento: formado

Re: Dúvida Séries

Mensagempor MarceloFantini » Seg Out 15, 2012 00:53

Seu argumento não faz sentido. Só porque os termos aumentam significa que a série diverge? Tome a série harmônica, cujos termos diminuem e não é convergente.

Uma condição necessária porém não suficiente para uma série convergir é que \lim_{n \to \infty} a_n = 0. Agora note que \lim_{n \to \infty} n \cdot \ln n = + \infty, logo a série é divergente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dúvida Séries

Mensagempor Aprendiz2012 » Ter Out 16, 2012 02:08

ok... é possível aplicando limite..

porém porque \lim_{n\rightarrow\infty} n. ln n ??
Aprendiz2012
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sáb Ago 11, 2012 18:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em química
Andamento: formado

Re: Dúvida Séries

Mensagempor MarceloFantini » Ter Out 16, 2012 08:45

Porque esta é a sequência que dá origem à série. Veja este link.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.