por Aprendiz2012 » Seg Out 15, 2012 00:03
Aplicando os teoremas e corolários, verificar se a série é conveg. ou diverg. Se Possível encontre Sn

fiz:



concluindo que a série é divergente
mas acredito que esteja errado..
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
por MarceloFantini » Seg Out 15, 2012 00:53
Seu argumento não faz sentido. Só porque os termos aumentam significa que a série diverge? Tome a série harmônica, cujos termos diminuem e não é convergente.
Uma condição necessária porém não suficiente para uma série convergir é que

. Agora note que

, logo a série é divergente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Aprendiz2012 » Ter Out 16, 2012 02:08
ok... é possível aplicando limite..
porém porque
n. ln
n ??
-
Aprendiz2012
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sáb Ago 11, 2012 18:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em química
- Andamento: formado
por MarceloFantini » Ter Out 16, 2012 08:45
Porque esta é a sequência que dá origem à série. Veja
este link.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Séries] Sobre simplicação de expressões em séries
por HenriqueOrlan » Sáb Nov 21, 2015 11:28
- 1 Respostas
- 3590 Exibições
- Última mensagem por adauto martins

Qua Nov 25, 2015 16:31
Sequências
-
- [Séries] Dúvida sobre divergência de série
por leticia_08 » Sáb Abr 19, 2014 20:12
- 7 Respostas
- 4145 Exibições
- Última mensagem por Russman

Dom Abr 20, 2014 13:42
Sequências
-
- Séries
por Guilherme Carvalho » Seg Set 17, 2012 22:50
- 5 Respostas
- 3241 Exibições
- Última mensagem por Guilherme Carvalho

Ter Set 18, 2012 16:24
Sequências
-
- Séries
por manuoliveira » Sex Mai 23, 2014 21:07
- 2 Respostas
- 2057 Exibições
- Última mensagem por Man Utd

Ter Mai 27, 2014 15:10
Sequências
-
- Sequencias e Séries
por Neperiano » Dom Set 26, 2010 19:28
- 1 Respostas
- 2180 Exibições
- Última mensagem por Marcampucio

Dom Set 26, 2010 21:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.