• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Interseção de reta e plano] Dúvida exerc.

[Interseção de reta e plano] Dúvida exerc.

Mensagempor MrJuniorFerr » Dom Out 14, 2012 17:50

Boa tarde a todos.

Estou com dúvida no seguinte exercício:

Obtenha a interseção da reta r com o plano \pi.

reta r:
x=-1+\lambda
y=-1-\lambda
z=1

\pi: x+y+z=-1

Eu tentei resolver da seguinte forma:

Os valores de x, y, e z de r, eu os substituí na na equação \pi, ficando:

-1+\lambda-1-\lambda+1=-1

Mas como podem ver, o \lambda vai se cortar... e não vou conseguir descobrir seu valor desta forma.

Como eu poderia resolver este sistema?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MarceloFantini » Dom Out 14, 2012 18:27

Isto provavelmente significa que a reta está contida no plano.

A igualdade será satisfeita para qualquer \lambda \in \mathbb{R}, e vemos que o vetor normal ao plano, que é (1,1,1), é ortogonal ao vetor diretor da reta, que é (1,-1,0).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MrJuniorFerr » Dom Out 14, 2012 18:53

MarceloFantini escreveu:Isto provavelmente significa que a reta está contida no plano.

A igualdade será satisfeita para qualquer \lambda \in \mathbb{R}, e vemos que o vetor normal ao plano, que é (1,1,1), é ortogonal ao vetor diretor da reta, que é (1,-1,0).


Se nesse caso, a reta está contida no plano, a interseção da reta e o plano é a própria reta?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MarceloFantini » Dom Out 14, 2012 18:56

Sim.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MrJuniorFerr » Dom Out 14, 2012 19:10

Marcelo, antes de você me responder, eu tinha conseguido resolver o sistema... só que não tenho certeza q está certo, olhe:

Eu somei todas as equações e obtive:

x+y+z+x+y+z=-1+\lambda-1-\lambda+1-1

e cheguei em:

2x+2y+2z=-2

como z=1,

2x+2y+2=-2

2x+2y=-4

2x=-4-2y

x=\frac{-4-2y}{2}

x=-2-y

Sabendo disso, o ponto de interseção é:

I(-2-y,y,1)

Se você não me falasse, eu iria resolver dessa forma, e achar que a interseção dessa reta e o plano, seria um ponto...
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MarceloFantini » Dom Out 14, 2012 19:26

Sua resolução não faz sentido. A interseção de uma reta e um plano só pode ser uma de três possibilidades: nada, um ponto ou uma reta, que é o caso em que a reta está contida no plano.

Note que se você somasse apenas as equações da reta, perceberia que x+y+z = (-1+ \lambda) + (-1 - \lambda) +1 = -1, que é justamente a equação do plano. A conclusão é que a reta está contida no plano.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MrJuniorFerr » Dom Out 14, 2012 19:42

Por qual motivo a minha resolução não faz sentido? Não pode somar todas as equações como eu somei?
Se a professora colocasse um exercício desse tipo na prova, eu teria que avaliar então se o vetor diretor da reta é perpendicular ao vetor normal do plano para qualquer das três possibilidades que você citou?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MarceloFantini » Dom Out 14, 2012 19:53

Não faz sentido porque você somou a mesma equação a ela. Note que o resultado que você chegou, que é 2x+2y+2z = -2, é simplesmente um múltiplo da equação do plano original. Quando você substituiu z=1, você fez a interseção do plano com o plano z=1, que é paralelo ao plano xy. Daí você encontrou a reta que é a interseção destes dois planos.

Em outras palavras, você resolveu um problema diferente do enunciado. Não tente fixar um método de resolução para tudo, é caminho certo para falhar.

Para começar, eu faria o mesmo que fez: substituir e ver o que encontra. Como não há erros na álgebra e você viu que é independente do parâmetro, deveria ter pensado um pouco e percebido que a reta estava contida no plano.

Se você chegasse numa impossibilidade, como -1=1, então a reta não teria interseção com o plano.

Por último, se encontrasse um valor único para o parâmetro, como \lambda =3, então a interseção seria um único ponto e você substituiria na equação da reta para encontrar este ponto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MrJuniorFerr » Dom Out 14, 2012 22:35

Entendi Marcelo, vou começar a prestar mais atenção nos detalhes. Aprendi com você que nada acontece por acaso, ou seja, para todo acontecimento há uma causa. Obrigado.

Na resolução deste exercício, posso explicar a minha conclusão da reta estar contida no plano a partir do parâmetro \lambda se cortar na substituição?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Interseção de reta e plano] Dúvida exerc.

Mensagempor MarceloFantini » Dom Out 14, 2012 22:38

Sim, mostre que ela satisfaz a equação do plano. Pode fazer isto substituindo ou somando (são processos equivalentes).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D