por MrJuniorFerr » Dom Out 14, 2012 17:50
Boa tarde a todos.
Estou com dúvida no seguinte exercício:
Obtenha a interseção da reta r com o plano
.reta r:




Eu tentei resolver da seguinte forma:
Os valores de x, y, e z de r, eu os substituí na na equação

, ficando:

Mas como podem ver, o

vai se cortar... e não vou conseguir descobrir seu valor desta forma.
Como eu poderia resolver este sistema?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Dom Out 14, 2012 18:27
Isto provavelmente significa que a reta está contida no plano.
A igualdade será satisfeita para qualquer

, e vemos que o vetor normal ao plano, que é

, é ortogonal ao vetor diretor da reta, que é

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Dom Out 14, 2012 18:53
MarceloFantini escreveu:Isto provavelmente significa que a reta está contida no plano.
A igualdade será satisfeita para qualquer

, e vemos que o vetor normal ao plano, que é

, é ortogonal ao vetor diretor da reta, que é

.
Se nesse caso, a reta está contida no plano, a interseção da reta e o plano é a própria reta?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Dom Out 14, 2012 18:56
Sim.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Dom Out 14, 2012 19:10
Marcelo, antes de você me responder, eu tinha conseguido resolver o sistema... só que não tenho certeza q está certo, olhe:
Eu somei todas as equações e obtive:

e cheguei em:

como z=1,





Sabendo disso, o ponto de interseção é:

Se você não me falasse, eu iria resolver dessa forma, e achar que a interseção dessa reta e o plano, seria um ponto...
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Dom Out 14, 2012 19:26
Sua resolução não faz sentido. A interseção de uma reta e um plano só pode ser uma de três possibilidades: nada, um ponto ou uma reta, que é o caso em que a reta está contida no plano.
Note que se você somasse apenas as equações da reta, perceberia que

, que é justamente a equação do plano. A conclusão é que a reta está contida no plano.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Dom Out 14, 2012 19:42
Por qual motivo a minha resolução não faz sentido? Não pode somar todas as equações como eu somei?
Se a professora colocasse um exercício desse tipo na prova, eu teria que avaliar então se o vetor diretor da reta é perpendicular ao vetor normal do plano para qualquer das três possibilidades que você citou?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Dom Out 14, 2012 19:53
Não faz sentido porque você somou a mesma equação a ela. Note que o resultado que você chegou, que é

, é simplesmente um múltiplo da equação do plano original. Quando você substituiu

, você fez a interseção do plano com o plano

, que é paralelo ao plano

. Daí você encontrou a reta que é a interseção destes dois planos.
Em outras palavras, você resolveu um problema diferente do enunciado. Não tente fixar um método de resolução para tudo, é caminho certo para falhar.
Para começar, eu faria o mesmo que fez: substituir e ver o que encontra. Como não há erros na álgebra e você viu que é independente do parâmetro, deveria ter pensado um pouco e percebido que a reta estava contida no plano.
Se você chegasse numa impossibilidade, como

, então a reta não teria interseção com o plano.
Por último, se encontrasse um valor único para o parâmetro, como

, então a interseção seria um único ponto e você substituiria na equação da reta para encontrar este ponto.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Dom Out 14, 2012 22:35
Entendi Marcelo, vou começar a prestar mais atenção nos detalhes. Aprendi com você que nada acontece por acaso, ou seja, para todo acontecimento há uma causa. Obrigado.
Na resolução deste exercício, posso explicar a minha conclusão da reta estar contida no plano a partir do parâmetro

se cortar na substituição?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Dom Out 14, 2012 22:38
Sim, mostre que ela satisfaz a equação do plano. Pode fazer isto substituindo ou somando (são processos equivalentes).
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Interseção de reta e plano] Dúvida exerc. 2
por MrJuniorFerr » Seg Out 15, 2012 00:35
- 3 Respostas
- 2024 Exibições
- Última mensagem por MarceloFantini

Seg Out 15, 2012 08:13
Geometria Analítica
-
- interseção,área e reta dúvida exercício
por igor44 » Seg Out 31, 2011 21:20
- 1 Respostas
- 2002 Exibições
- Última mensagem por procyon

Ter Nov 01, 2011 00:57
Geometria Analítica
-
- [Dúvida reta e plano]
por Andresa_s » Qua Ago 01, 2012 13:02
- 1 Respostas
- 1451 Exibições
- Última mensagem por MarceloFantini

Qua Ago 01, 2012 21:07
Geometria Espacial
-
- [Ângulo - reta e plano] Dúvida exercício
por MrJuniorFerr » Sex Out 12, 2012 11:51
- 6 Respostas
- 4353 Exibições
- Última mensagem por MarceloFantini

Sex Out 12, 2012 20:18
Geometria Analítica
-
- [´PLANO] Ponto de intersecção de reta com plano
por manuel_pato1 » Ter Set 25, 2012 09:48
- 1 Respostas
- 14789 Exibições
- Última mensagem por LuizAquino

Ter Set 25, 2012 12:11
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.