por Ananda » Sex Mar 14, 2008 22:37
Boa noite!
Eis o exercício: No cubo de aresta 1, considere as arestas AC e BC e o ponto médio M, de AC.
a) Determine o cosseno do ângulo BÂD.
b) Determine o cosseno do ângulo BMD. (M).
c) Qual dos ângulos BÂD ou BMd (M) é maior? Justifique.
Bom, o primeiro eu fiz assim:
a)cateto adjacente = AB = diagonal do quadrado = ![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
hipotenusa = AD = diagonal do cubo = ![\sqrt[]{3} \sqrt[]{3}](/latexrender/pictures/b84ccc0f808c82dca2d7b0f887c64445.png)
Logo, cosseno = ![\frac{\sqrt[]{2}}{\sqrt[]{3}}=\frac{\sqrt[]{6}}{3} \frac{\sqrt[]{2}}{\sqrt[]{3}}=\frac{\sqrt[]{6}}{3}](/latexrender/pictures/4c3b6ae55152e8082fbaadea7d3b677f.png)
Acredito que esteja certo já que a resposta é igual a do livro.
b) Estou em dúvida. Olho, olho para o desenho, mas não vejo saída. Em um momento, veio-me à mente considerar que os triângulos CDM e ABM são retângulos. Com isso, cheguei a
. Mas a resposta do livro é:
.
Vou colocar as contas que fiz:
2 =
+0,25
MB=![\frac{\sqrt[]{7}}{2} \frac{\sqrt[]{7}}{2}](/latexrender/pictures/d3207d553aa6c1298bbc1fc4b39c881e.png)
=2+0,25
MD=1,5
cosseno = ![\frac{\sqrt[]{7}}{2}.\frac{2}{3}=\frac{\sqrt[]{7}}{3} \frac{\sqrt[]{7}}{2}.\frac{2}{3}=\frac{\sqrt[]{7}}{3}](/latexrender/pictures/8ced3459649b227e0647535a5c919190.png)
O que errei?
Bom, a letra c depende das respostas anteriores.
Grata desde já pela atenção!
Bom final de semana!
- Anexos
-

Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Sex Mar 14, 2008 23:58
Olá, Ananda!
O item (a) está certo sim.
O item (b) você errou por pouco. Há dois erros.
1) Os triângulos ABM e CDM são de fato retângulos, mas nos pontos A e C, respectivamente.
Refaça a conta para encontrar MB.
E como M é ponto médio de AC, segue que o triângulo BMD é isósceles.
Logo, MB = MD.
2) O triângulo BMD não é retângulo, ou seja, nele você não poderá aplicar a relação de cateto adjacente sobre hipotenusa.
Para encontrar o cosseno neste caso, você precisará da lei dos cossenos que relaciona dois lados adjacentes ao ângulo com o lado oposto.
Pense como uma extensão do teorema de Pitágoras para um triângulo qualquer.
Depois, com os dois valores dos cossenos, identifique e justifique qual ângulo é maior.
Não há apenas uma forma de justificar.
Se tiver dúvida na justificativa ou em "visualizar" qual ângulo é maior, comente comigo e discutimos.
Espero ter ajudado!
Bons estudos e bom final de semana!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Sáb Mar 15, 2008 13:21
Grata, Fábio!
Sobre a justificativa farei com relação ao fato de que quanto maior o ângulo, menor o cosseno.
Excelente final de semana!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Sáb Mar 15, 2008 20:17
Olá.
Apenas cuidado com esta justificativa, não pode ser generalizada.
No intervalo
![[0, \pi] [0, \pi]](/latexrender/pictures/f74f8710fd31ce502365bc814a7fd3b6.png)
está correta, mas em
![[\pi, 2\pi] [\pi, 2\pi]](/latexrender/pictures/fd3a253ed973b49d40f54cf9fbf2a43b.png)
quanto maior o ângulo, maior o cosseno.
Até mais.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Seg Mar 17, 2008 17:28
Olá, Fábio!
Grata por me lembrar, saber eu sei, mas na hora de justificar tenho que tomar cuidado em deixar bem claro.
Mais uma vez grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cosseno
por karen » Ter Nov 27, 2012 13:17
- 1 Respostas
- 1452 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 19:24
Trigonometria
-
- Função Cosseno
por DanielFerreira » Qui Jul 30, 2009 17:41
- 1 Respostas
- 2792 Exibições
- Última mensagem por Felipe Schucman

Qui Jul 30, 2009 18:01
Trigonometria
-
- Seno e Cosseno de X??
por Leone de Paula » Ter Jul 13, 2010 00:28
- 1 Respostas
- 4528 Exibições
- Última mensagem por Tom

Ter Jul 13, 2010 00:43
Geometria Plana
-
- Lei do seno e cosseno
por renataf » Sex Dez 03, 2010 11:06
- 7 Respostas
- 18450 Exibições
- Última mensagem por Lorettto

Sáb Dez 11, 2010 01:17
Trigonometria
-
- [LIMITE] cosseno
por beel » Ter Set 06, 2011 13:10
- 7 Respostas
- 6867 Exibições
- Última mensagem por beel

Sex Set 09, 2011 13:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.