• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Não sei como Resolver

[Limite] Não sei como Resolver

Mensagempor eli83 » Qua Out 10, 2012 09:48

Aplicando o conceito de existência de limite, verificar se existe o limite da seguinte função quando x tende para zero.

\begin{equation*}
f(x) = \left\{
\begin{array}{rl}
5 & \text{se } x\neq0\\
6 & \text{se } x\doteq0\\
\end{array} \right.
\end{equation*}

Não sei como resolver este. Alguém poderia me ajudar?
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 18:06

Sim, o limite existe pois:

\lim_{x\rightarrow0^+} f(x) = 5

e

\lim_{x\rightarrow0^-} f(x) = 5

Lembre-se, como x tende a 0, x é próximo, mas diferente de 0, ou seja f(x) = 5.
Editado pela última vez por MrJuniorFerr em Qua Out 10, 2012 23:26, em um total de 1 vez.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Limite] Não sei como Resolver

Mensagempor MarceloFantini » Qua Out 10, 2012 21:07

Note que ela não é uma função constante inteiramente, pois não é contínua na origem. De fato os limites laterais coincidem, mas o valor da função no ponto zero é 6, e não 5.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 23:04

MarceloFantini escreveu:Note que ela não é uma função constante inteiramente, pois não é contínua na origem. De fato os limites laterais coincidem, mas o valor da função no ponto zero é 6, e não 5.
´

Verdade, não é uma função constante inteiramente.
Sim, eu sei. A função no ponto zero é 6. Mas o exercício não quer a função no ponto zero e sim valores próximos a zero, ou seja, diferente de zero, por exemplo, -0,01 e 0,01. Estes dois números são iguais ou diferentes de zero? Pois se você os considera diferente de zero, então temos que verificar os limites laterais de f(x)=5.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Limite] Não sei como Resolver

Mensagempor MarceloFantini » Qua Out 10, 2012 23:07

Sim, eu apenas estava contra-argumentando a respeito da sua afirmação sobre ser uma função constante.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 23:13

MarceloFantini escreveu:Sim, eu apenas estava contra-argumentando a respeito da sua afirmação sobre ser uma função constante.


Ah sim, entendi.
constante = contínua ?
Acredito que me expressei mal, pois quando coloquei que era uma função constante, era pelo fato da função não estar em função de x, ou seja, ser apenas números e não pelo fato de ser contínua ou não.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Limite] Não sei como Resolver

Mensagempor MarceloFantini » Qua Out 10, 2012 23:17

Uma função constante é contínua em todos os pontos, que não é o caso aqui. Por isso a observação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Não sei como Resolver

Mensagempor MrJuniorFerr » Qua Out 10, 2012 23:22

Entendi Marcelo. Obrigado pela observação.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.