por eli83 » Qua Out 10, 2012 10:33
Aplicando o conceito de exitência de limite, verifique se existe o limite da seguinte função quando x tende para dois:
![f(x) = {\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} f(x) = {\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}](/latexrender/pictures/4692b09dbdfaaa74cf7c39ffaa8d116d.png)
Fiz utilizando Continuidade.
Se f é contínua em a, então as três condições deverão ser satisfeitas.
existe f(a)
existe
![\lim_{x\to a}f(x) = \lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} \lim_{x\to a}f(x) = \lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}](/latexrender/pictures/75905edffe433a62bc7597ae007d68c6.png)
=
![{\displaystyle\biggl[24\biggr]^{5}} {\displaystyle\biggl[24\biggr]^{5}}](/latexrender/pictures/ed438677b083c4cdbe4f5513cf245690.png)
(Posso aplicar a definição direta de limite neste caso, pois não terei problemas com o denominador.)
f(2) =
![{\displaystyle\biggl[24\biggr]^{5}} {\displaystyle\biggl[24\biggr]^{5}}](/latexrender/pictures/ed438677b083c4cdbe4f5513cf245690.png)
E como temos:
![\lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} \lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}](/latexrender/pictures/ee32c0c399d7187fbbcea203bb0cc54c.png)
=

Então existe
![\lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} \lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}](/latexrender/pictures/ee32c0c399d7187fbbcea203bb0cc54c.png)
Tenho uma dúvida em relação ao enunciado ele diz aplicando o conceito de existência de limite e eu solucionei aplicando o conceito de continuidade, isto estaria correto.
E também gostaria que verificassem a minha resolução.
-
eli83
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Sáb Out 06, 2012 11:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por young_jedi » Qua Out 10, 2012 19:27
Neste caso voce deve verificar se os limites laterais existem e se são iguais, sendo assim o limite existe
Como o exercicio so pede para verificar a existencia do limite não precisa verificar se a função é continua
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por MarceloFantini » Qua Out 10, 2012 21:06
Um outro toque, nunca escreva

, e sim

. Só existe limite de funções.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por eli83 » Qui Out 11, 2012 09:16
E nesse caso como faço. Atribuo valores aleatórios a esquerda e a direita de 2.
-
eli83
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Sáb Out 06, 2012 11:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por young_jedi » Qui Out 11, 2012 17:25
Sim voce atribui valores proximos a 2 pela direita e pela esquerda, veja se eles convergem para um mesmo valor, analisando a questão é possivel ver que sim e portanto o limite existe.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- conceito de integral e limite
por OtavioBonassi » Sex Jan 07, 2011 15:52
- 11 Respostas
- 8244 Exibições
- Última mensagem por OtavioBonassi

Dom Jan 09, 2011 22:47
Cálculo: Limites, Derivadas e Integrais
-
- [verificar a existência] limite trigonométrico
por Fabio Wanderley » Sáb Mar 24, 2012 13:14
- 1 Respostas
- 1394 Exibições
- Última mensagem por MarceloFantini

Sáb Mar 24, 2012 14:49
Cálculo: Limites, Derivadas e Integrais
-
- Existência de limite e se existir, pertence aos reais ou com
por Douglas16 » Qui Fev 28, 2013 20:36
- 3 Respostas
- 2535 Exibições
- Última mensagem por Jhonata

Qui Fev 28, 2013 22:52
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Conceito de Limite
por Raphaela_sf » Qui Abr 05, 2012 19:11
- 3 Respostas
- 1948 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
-
- Condição de Existência
por gustavowelp » Sáb Jun 26, 2010 11:56
- 5 Respostas
- 5283 Exibições
- Última mensagem por Molina

Sáb Jun 26, 2010 20:49
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.