• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Igualdade de matrizes

Igualdade de matrizes

Mensagempor anneliesero » Ter Out 09, 2012 18:32

Determine os números reais X e Y em cada caso:

\begin{pmatrix}
   8 & 3x-2y  \\ 
   x+3y & 5 
\end{pmatrix} = \begin{pmatrix}
   8 & 1  \\ 
   4 & 5 
\end{pmatrix}
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Igualdade de matrizes

Mensagempor MarceloFantini » Ter Out 09, 2012 18:45

Você igualou os elementos correspondentes da matriz? Depois é resolver um sistema de equações.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Igualdade de matrizes

Mensagempor Cleyson007 » Qua Out 10, 2012 09:29

Bom dia Anneliesero!

Iguale o elemento a12 da primeira matriz com o elemento a12 da segunda matriz. Iguale também o elemento a21 da primeira matriz com o elemento a21 da segunda matriz. Fazendo isso, chegará em:

3x - 2y = 1
x + 3y = 4

Esse é o sistema que o Fantini te falou.

Tente resolver. Comente qualquer dúvida :y:

Atenciosamente,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Igualdade de matrizes

Mensagempor anneliesero » Sex Out 12, 2012 15:42

Obrigada a todos já consegui resolver.
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)