por Malorientado » Dom Out 07, 2012 15:45
Determinar o conjunto solução de x³-ix²+4x-4i=0, i é raíz.
Bom se i é raíz, -i também é, certo? Multiplicando (x+i)(x-i) eu tenho dois fatores da equação, que posso usar para descobrir o outro fator, que contém a outra raíz(3° grau, 3 raízes). Basta que eu divida a equação pelos fatores e por q(x) encontrar a que falta. Está correto esse modo de resolução? E no caso de uma equação de grau 5, se for me dado duas ráizes Reais(tipo 2 e 1), mesmo que eu divida, ainda terei uma equação de grau 3 em q(x), que não aceita Bháskara. Nesses casos o único modo mais simples de se resolver é criar um fator com incógnitas, multiplicar pelos fatores com raízes dadas e depois igualar? Tipo: 1°coeficiente(x-1)(x-2)(x-a)(x-b)(x-c).
-
Malorientado
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Ago 06, 2012 23:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Dom Out 07, 2012 16:43
Sim, está correto seu método de resolução. No caso de um polinômio do quinto grau, se após reduzir os fatores for de terceiro grau, você sabe que existe ainda pelo menos uma raíz real e tenta encontrá-la. É muito difícil trabalhar com polinômios de grau maior que quatro pois não existe fórmula usando apenas operações comuns e radiciação. O que acontece na prática é o uso de cálculos numéricos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Malorientado » Dom Out 07, 2012 16:49
Então teria mesmo que efetuar 1°coeficiente(x-1)(x-2)(x-a)(x-b)(x-c) para depois comparar. Será que existe a possibilidade de encontrar uma questão assim em um concurso com nível de vestibular?
-
Malorientado
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Ago 06, 2012 23:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Dom Out 07, 2012 20:21
Podem aparecer questões com polinômios de graus maiores, mas quase sempre as raízes são muito simples, como inteiros. No caso de haver complexas, você reduz em duas quadráticas e tudo sai normalmente. Nem sempre é necessário fatorar e igualar coeficientes, mesmo porque este procedimento só é útil quando falta apenas um. Se houver mais coeficientes desconhecidos, pode não ser possível determiná-los unicamente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- equação de raízes complexas
por MariPC » Sáb Ago 15, 2009 15:56
- 1 Respostas
- 2213 Exibições
- Última mensagem por Felipe Schucman

Sáb Ago 15, 2009 17:35
Números Complexos
-
- Raizes de Polinômios
por GabyRitter » Ter Mai 19, 2009 22:43
- 5 Respostas
- 2918 Exibições
- Última mensagem por Molina

Sáb Mai 23, 2009 00:29
Funções
-
- raizes de polinomios de grau 3
por theSinister » Seg Mai 09, 2011 17:58
- 9 Respostas
- 5466 Exibições
- Última mensagem por theSinister

Seg Mai 09, 2011 21:35
Álgebra Elementar
-
- Polinômios" Multiplicidade de raizes de polinômio
por Rose » Sex Set 21, 2012 18:42
- 3 Respostas
- 2309 Exibições
- Última mensagem por young_jedi

Sáb Set 22, 2012 10:08
Polinômios
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 8112 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.