Determinar o conjunto solução de x³-ix²+4x-4i=0, i é raíz.
Bom se i é raíz, -i também é, certo? Multiplicando (x+i)(x-i) eu tenho dois fatores da equação, que posso usar para descobrir o outro fator, que contém a outra raíz(3° grau, 3 raízes). Basta que eu divida a equação pelos fatores e por q(x) encontrar a que falta. Está correto esse modo de resolução? E no caso de uma equação de grau 5, se for me dado duas ráizes Reais(tipo 2 e 1), mesmo que eu divida, ainda terei uma equação de grau 3 em q(x), que não aceita Bháskara. Nesses casos o único modo mais simples de se resolver é criar um fator com incógnitas, multiplicar pelos fatores com raízes dadas e depois igualar? Tipo: 1°coeficiente(x-1)(x-2)(x-a)(x-b)(x-c).



![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)