• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral trigonometrica] - Dúvidas

[Integral trigonometrica] - Dúvidas

Mensagempor rafiusk » Qui Out 04, 2012 18:05

\int\sqrt\frac{x^2-9}{x^3}{}}^{}


Eu cheguei na resposta \frac{\Theta}{6}-\frac{1}{12}*sen \Theta

Se alguém puder ajudar.
Editado pela última vez por rafiusk em Sex Out 05, 2012 16:56, em um total de 2 vezes.
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral trigonometrica] - Dúvidas

Mensagempor young_jedi » Sex Out 05, 2012 19:12

sua integral seria assim

\int\frac{\sqrt{x^2-9}}{x^3}dx

ou o x^3 esta dentro da raiz mesmo?
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral trigonometrica] - Dúvidas

Mensagempor rafiusk » Sáb Out 06, 2012 12:19

Young é do jeito que vc colocou mesmo {x}^{3} está fora da raiz.
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral trigonometrica] - Dúvidas

Mensagempor young_jedi » Sáb Out 06, 2012 13:52

fazendo a substituição trigonometrica

x=\frac{3}{cos\theta}

dx=\frac{3sen\theta}{cos^2\theta}d\theta

substituindo na integral

\int\frac{\sqrt{\frac{9}{cos^2\theta}-9}}{\frac{3^3}{cos^3\theta}}\frac{3sen\theta}{cos^2\theta}d\theta=

\int\frac{sen\theta.cos\theta}{3^2}\sqrt{\frac{9.(1-cos^2\theta)}{cos^2\theta}}d\theta=

\int\frac{sen\theta.cos\theta}{3^2}\sqrt{\frac{9sen^2\theta}{cos^2\theta}}d\theta=

\int\frac{1}{3}sen^2\theta.d\theta=

\frac{1}{3}\int{\frac{1-cos(2\theta)}{2}}d\theta=

\frac{1}{6}\theta-\frac{1}{12}sen(2\theta)

\frac{\theta}{6}-\frac{1}{12}2sen\theta.cos\theta

\frac{\theta}{6}-\frac{2}{12}\sqrt{1-cos^2\theta}.cos\theta

mais como

cos\theta=\frac{3}{x}

então

\frac{1}{6}arccos\left(\frac{3}{x}\right)-\frac{1}{6}\sqrt{1-\left(\frac{3^2}{x^2}\right)}.\frac{3}{x}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral trigonometrica] - Dúvidas

Mensagempor rafiusk » Sáb Out 06, 2012 17:38

Young o x não tem que ser x= 3 sec \Theta ?
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral trigonometrica] - Dúvidas

Mensagempor young_jedi » Sáb Out 06, 2012 17:43

Sim, mais repare que

3sec\theta=\frac{3}{cos\theta}

x=\frac{3}{cos\theta}

cos\theta=\frac{3}{x}

\theta=arccos\left(\frac{3}{x}\right)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral trigonometrica] - Dúvidas

Mensagempor rafiusk » Sáb Out 06, 2012 18:16

Blz...vlw young. Ajudou bastante.

Tenho mais algumas dúvidas em outras aqui.

Vc sabe se posso postar no msmo post? ou tenho que criar outro?
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral trigonometrica] - Dúvidas

Mensagempor MarceloFantini » Sáb Out 06, 2012 18:19

Se for em relação à esta integral, sim, caso contrário crie um novo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integral trigonometrica] - Dúvidas

Mensagempor rafiusk » Sáb Out 06, 2012 18:22

É relação a outra Marcelo. Vou fazer um outro tópico. Obrigado.
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D