• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor mayconf » Sáb Set 29, 2012 17:36

eai galera to com dificuldade em resolver essa derivada mais especificamente no "x elevado a -3" se alguém puder me ajudar
g(x)=1+\frac{1}{x{}^{-3}}+\frac{1}{x}+\frac{1}{x{}^{2}}
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 18:00

Olá Mayconf,
boa tarde!

Dica:

\\ \frac{1}{x^{- 3}} = \\\\\\ \left ( \frac{1}{x^{- 3}} \right ) = \\\\\\ \left ( x^{- 3} \right )^{- 1} = \\\\ x^3

Espero que ajuda, caso contrário, retorne ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Sáb Set 29, 2012 18:06

vlw aew danjr5 brigadão :D
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor Russman » Sáb Set 29, 2012 18:13

Observe que a derivada de uma soma de funções é a soma das derivadas das mesmas. Ainda,

\frac{1}{x^n}=x^{-n},x\neq 0,n\in\mathbb{N},

e

\frac{\mathrm{d} }{\mathrm{d} x}x^n = n.x^{n-1}

Exemplo.

f(x) = \frac{1}{x^2}-\frac{1}{x^{-4}}\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x}f(x)=\frac{\mathrm{d} }{\mathrm{d} x}\frac{1}{x^2} -\frac{\mathrm{d} }{\mathrm{d} x}\frac{1}{x^{-4}} = \frac{\mathrm{d} }{\mathrm{d} x}x^{-2} - \frac{\mathrm{d} }{\mathrm{d} x}x^4 = -2x^{-3}-4x^3 = -\frac{2}{x^3}-4x^3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 18:23

mayconf escreveu:vlw aew danjr5 brigadão :D

Não há de quê! A propósito, o quê encontrou como resposta?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Sáb Set 29, 2012 19:15

danjr5 escreveu:
mayconf escreveu:vlw aew danjr5 brigadão :D

Não há de quê! A propósito, o quê encontrou como resposta?

encontrei g(x)= 3x{}^{2}-x{}^{-2}-2x{}^{-3}
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 19:39

Confere!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Dom Set 30, 2012 01:15

:D brigadão mesmo ai
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: