• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor mayconf » Sáb Set 29, 2012 17:36

eai galera to com dificuldade em resolver essa derivada mais especificamente no "x elevado a -3" se alguém puder me ajudar
g(x)=1+\frac{1}{x{}^{-3}}+\frac{1}{x}+\frac{1}{x{}^{2}}
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 18:00

Olá Mayconf,
boa tarde!

Dica:

\\ \frac{1}{x^{- 3}} = \\\\\\ \left ( \frac{1}{x^{- 3}} \right ) = \\\\\\ \left ( x^{- 3} \right )^{- 1} = \\\\ x^3

Espero que ajuda, caso contrário, retorne ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Sáb Set 29, 2012 18:06

vlw aew danjr5 brigadão :D
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor Russman » Sáb Set 29, 2012 18:13

Observe que a derivada de uma soma de funções é a soma das derivadas das mesmas. Ainda,

\frac{1}{x^n}=x^{-n},x\neq 0,n\in\mathbb{N},

e

\frac{\mathrm{d} }{\mathrm{d} x}x^n = n.x^{n-1}

Exemplo.

f(x) = \frac{1}{x^2}-\frac{1}{x^{-4}}\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x}f(x)=\frac{\mathrm{d} }{\mathrm{d} x}\frac{1}{x^2} -\frac{\mathrm{d} }{\mathrm{d} x}\frac{1}{x^{-4}} = \frac{\mathrm{d} }{\mathrm{d} x}x^{-2} - \frac{\mathrm{d} }{\mathrm{d} x}x^4 = -2x^{-3}-4x^3 = -\frac{2}{x^3}-4x^3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 18:23

mayconf escreveu:vlw aew danjr5 brigadão :D

Não há de quê! A propósito, o quê encontrou como resposta?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Sáb Set 29, 2012 19:15

danjr5 escreveu:
mayconf escreveu:vlw aew danjr5 brigadão :D

Não há de quê! A propósito, o quê encontrou como resposta?

encontrei g(x)= 3x{}^{2}-x{}^{-2}-2x{}^{-3}
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 19:39

Confere!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Dom Set 30, 2012 01:15

:D brigadão mesmo ai
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}