por renan_a » Qui Set 27, 2012 11:10
A ,B, C, D e E são vértices de um trapézio isósceles de bases AB e CD . Sabendo que: B(1,-1,2) , C(3,-2,3) e D (3,1,0) , Determine A: resp: a(1,0,1)

- Sem título.png (2.25 KiB) Exibido 2876 vezes
Tô quebrando a cabeça, mas tá difícil.
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Qui Set 27, 2012 11:31
A reta AB é paralela a reta CD com isso, concluimos que elas tem o mesmo vetor direção
então encontrando o vetor direção de CD encontramos o da reta que passa por AB, substituindo o ponto B
encontramos a equação da reta AB.
Levando em consideração que a Distancia CB é igual a distancia AD utilizando a equação da reta encontrada da para achar o ponto A.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Sex Set 28, 2012 10:43
Então, levando em consideração que AB//CD , CD(0,3,-3) , logo a reta que passa por A e B é:
r: (x,y,z,)= (1,-1,2) + t(0,3,-3) , correto?
Mas daí pra frente eu não consegui entender ao certo o que eu deveria fazer. Desculpe minha ignorância =)
Devo substituir qual ponto na reta, para encontrar o A?
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por renan_a » Sex Set 28, 2012 10:52
Acho que entendi o que tu quis dizer agora heheh... sendo o ponto P ( 1, -1+3t, 2-3t) , posso fazer que
PD=BC
DP( -2, -2-3t , 2 -3t)
BC( 2,-1,1)
(-2,-2-3t, 2-3t)= (2,-1,1)
Aí eu teria que fazer IDPI=IBCI
![\sqrt[2]{4 +4 +9t^2 + 12t +4 + 9t^2-12t}=\sqrt[2]{6} \sqrt[2]{4 +4 +9t^2 + 12t +4 + 9t^2-12t}=\sqrt[2]{6}](/latexrender/pictures/a6903085a483c58d9b9d067d2eed18c9.png)
Só que cortando a raiz dos dois lados, fica que
18t² +12 = 6
18t² = -6
t²= -1/3
só que não existe raiz quadrada de número negativo. =S
Fiz algo errado?
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Sex Set 28, 2012 13:33
amigo analisei seus calculos vi que quando voce calcula PD na coordenada y
seria -2+3t mais voce colocou -2-3t
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Sáb Set 29, 2012 18:37
Agora consegui!
Seguinte: Tendo em mente que A( 1, -1-3t, 2+3t) e D(3,1,0)
O vetor AD( 2,2+3t, -2-3t) em módulo, tem que ser igual ao módulo de BC (2,-1,1)
![\sqrt[2]{2^2 + (2+3t)^2 + (-2-3t)^2} \sqrt[2]{2^2 + (2+3t)^2 + (-2-3t)^2}](/latexrender/pictures/6df0ff073c7fa9a00b7315448e2a9470.png)
=
![\sqrt[2]{2^2 + (-1)^2 + 1^2} \sqrt[2]{2^2 + (-1)^2 + 1^2}](/latexrender/pictures/91343d170c2d061c1f4eb13800818bfa.png)
elevando os quadrados e cortando as raízes, fica:
18t^2 + 24t + 6 = 0 (*1/6)
3t^2 + 4t + 1 = 0
t'= -1/3
Substituindo em A:
x= 1
y= -1 - 3*-1/3 = 0
z= 2 + 3*-1/3 = 1
logo , ponto A ( 1,0,1)
--------------------------------------------
Obrigado pela ajuda, young_jedi. Abraços
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada através de Ponto Máximo - Otimização
por Suriano » Qua Mai 06, 2009 20:42
- 3 Respostas
- 6065 Exibições
- Última mensagem por Suriano

Qua Mai 13, 2009 21:39
Cálculo
-
- retas
por cristina » Qui Nov 26, 2009 01:01
- 1 Respostas
- 1473 Exibições
- Última mensagem por Neperiano

Sex Set 23, 2011 19:28
Geometria Analítica
-
- Retas
por Jaison Werner » Ter Abr 27, 2010 18:52
- 2 Respostas
- 1725 Exibições
- Última mensagem por Mathmatematica

Dom Jun 13, 2010 01:18
Geometria Analítica
-
- Retas
por manuoliveira » Qua Mai 23, 2012 16:28
- 1 Respostas
- 6780 Exibições
- Última mensagem por LuizAquino

Qua Mai 23, 2012 20:44
Geometria Analítica
-
- [Retas]
por dehcalegari » Seg Jun 24, 2013 17:57
- 2 Respostas
- 1390 Exibições
- Última mensagem por dehcalegari

Ter Jun 25, 2013 15:21
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.