por fabriel » Ter Set 25, 2012 02:57
Me ajudem nessa parte aqui que eu empaquei:
Então é dada essa função:

então derivei e deu isso:
![\frac{dy}{dx}=\frac{-x^2-16}{[x^2-6x-16]^2} \frac{dy}{dx}=\frac{-x^2-16}{[x^2-6x-16]^2}](/latexrender/pictures/c5e5526f5228d52b1fbe022b0a6a9bb0.png)
Ai agora é q entra a duvida. Estudando o sinal temos que o denominador vai ser sempre positivo né??, entretanto, no numerador, pareçe que não vai ter raiz real?? é isso.
Tem como alguém me mostrar o caminho por favor, obrigado.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por LuizAquino » Ter Set 25, 2012 09:31
fabriel escreveu:Me ajudem nessa parte aqui que eu empaquei:
Então é dada essa função:

então derivei e deu isso:
![\frac{dy}{dx}=\frac{-x^2-16}{[x^2-6x-16]^2} \frac{dy}{dx}=\frac{-x^2-16}{[x^2-6x-16]^2}](/latexrender/pictures/c5e5526f5228d52b1fbe022b0a6a9bb0.png)
Ai agora é q entra a duvida. Estudando o sinal temos que o denominador vai ser sempre positivo né??, entretanto, no numerador, pareçe que não vai ter raiz real?? é isso.
Tem como alguém me mostrar o caminho por favor, obrigado.
O denominador é sempre positivo. Já o numerador é sempre negativo. Além disso, o numerador não tem raiz real. Desse modo, você irá concluir que f'(x) < 0 para todo x no domínio de f. Isso significa que o gráfico dessa função é sempre decrescente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por fabriel » Ter Set 25, 2012 12:57
Valeu obrigado.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- crescimento e decrescimento
por joandro » Dom Abr 13, 2014 11:30
- 1 Respostas
- 1356 Exibições
- Última mensagem por alienante

Ter Abr 29, 2014 17:27
Cálculo: Limites, Derivadas e Integrais
-
- Intervalo de crescimento e decrescimento
por valeuleo » Qui Jun 23, 2011 12:02
- 4 Respostas
- 2682 Exibições
- Última mensagem por LuizAquino

Sáb Jun 25, 2011 16:50
Cálculo: Limites, Derivadas e Integrais
-
- crescimento e decrescimento da função
por Ana Maria da Silva » Qua Out 02, 2013 10:18
- 1 Respostas
- 1072 Exibições
- Última mensagem por Bravim

Qui Out 03, 2013 05:32
Cálculo: Limites, Derivadas e Integrais
-
- Intervalos de crescimento e decrescimento da função
por valeuleo » Ter Jun 21, 2011 21:50
- 3 Respostas
- 3299 Exibições
- Última mensagem por LuizAquino

Ter Jun 21, 2011 22:44
Cálculo: Limites, Derivadas e Integrais
-
- decrescimento,crescimento e pontos criticos
por LILI2016 » Ter Abr 19, 2016 09:57
- 0 Respostas
- 1283 Exibições
- Última mensagem por LILI2016

Ter Abr 19, 2016 09:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.