por ftdk » Dom Set 23, 2012 10:17
Bom dia.
" Determine pelo metodo de Laguerre o intervalo que contenha todas as raizes reais da equacao

"
Exercicio relativamente simples, mas ao fazer a aproximacao da raiz, me deparei com nosso amigo
zero. Minha duvida é se, nesse caso, eu devo coloca-lo em uma classificacao de
positivo ou
negativo apenas para terminar a resolucao, e lembrando que eu ainda nao conheço numeros complexos, mas o enunciado pediu apenas as raizes reais.
Até este momento, o resultado bate com o gabarito, pois o intervalo é ]-2;2[. Mas, se fosse necessário, como eu deveria proceder nessa situação ?

ps: tentei postar sem utilizar imagens externas, mas nao consegui inserir tabelas aqui. Existe algum tutorial para insercao de tabelas?
-
ftdk
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Set 23, 2012 09:31
- Localização: Sao Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: eletrônica
- Andamento: cursando
por MarceloFantini » Dom Set 23, 2012 13:34
Não entendo o que quer dizer exatamente, pois zero não é uma raíz deste polinômio. O que acontece é que o valor da função é negativo neste ponto. Marque apenas como raíz, não precisa classificá-lo como positivo ou negativo (mesmo porque ele é neutro).
Você poderia usar LaTeX para inserir a tabela.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por ftdk » Dom Set 23, 2012 15:05
Marcelo, obrigado pela resposta e desculpe se nao fui bem claro.
De acordo com o metodo de Laguerre, ao substituirmos os valores do intervalo ]-2;2[ na função, sempre que o resultado alternar entre + e -, significa que existe uma raiz real entre esses valores, correto? Por exemplo, existe 1 raiz real no intervalo ]1;2[
A minha duvida é quando substituo -1 na funcao. O resultado de f[-1] = 0, entao nao sei se em f[-1] eu considero positivo (acarretando em 1 raiz real entre ]-2;-1[, e 1 raiz real entre ]-1;0[ ) ou negativo (nao haveria nenhuma raiz real nesses intervalos).
-
ftdk
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Set 23, 2012 09:31
- Localização: Sao Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: eletrônica
- Andamento: cursando
por MarceloFantini » Dom Set 23, 2012 15:39
Você está confundindo conceitos. A definição de raíz de uma função é justamente que

. Quando você substitui -1 na função você vê que

, logo -1 é raíz da função. Isto significa que qualquer intervalo contendo -1 fará com que a função assuma valores positivos e negativos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por ftdk » Dom Set 23, 2012 18:24
Ah, então acho que tambem entendi porque não incluimos os extremos no intervalo ]-2;2[.
Agora, só por curiosidade, vou tentar calcular a menor e a maior raiz desse polinomio. Obrigado pela ajuda.
-
ftdk
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Set 23, 2012 09:31
- Localização: Sao Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: eletrônica
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método dos Mínimos Quadrados - Dúvida no desenvolvimento
por cafdesouza » Dom Dez 11, 2011 11:36
- 0 Respostas
- 1196 Exibições
- Última mensagem por cafdesouza

Dom Dez 11, 2011 11:36
Estatística
-
- [Método de Newton] - Duvida nessa questão
por zifles2012 » Seg Set 17, 2012 16:13
- 1 Respostas
- 1994 Exibições
- Última mensagem por LuizAquino

Seg Set 17, 2012 19:55
Cálculo Numérico e Aplicações
-
- método de contagem
por sinuca147 » Seg Mai 25, 2009 09:10
- 2 Respostas
- 23032 Exibições
- Última mensagem por sinuca147

Seg Mai 25, 2009 23:35
Conjuntos
-
- Metodo de Gauss
por Jaison Werner » Seg Jan 10, 2011 19:11
- 3 Respostas
- 2816 Exibições
- Última mensagem por Renato_RJ

Ter Jan 18, 2011 23:42
Cálculo: Limites, Derivadas e Integrais
-
- Metodo de Jacobi
por Jaison Werner » Seg Jan 10, 2011 19:14
- 1 Respostas
- 1216 Exibições
- Última mensagem por Elcioschin

Ter Jan 11, 2011 22:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.